L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for...L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.展开更多
Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrod...Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrode and the Ni/graphite modified electrode has been carried out. The different effects of concentration, current density and temperature on the rate of degradation were studied. This study shows that the rate of the degradation is more for Ni doped modified graphite electrode. UV-Visible spectra before and after degradation of the dye solution were observed. The thin film formation of Ni or encapsulated in graphite rod is observed by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM & EDAX). The instantaneous current effectiveness values of different experimental conditions are evaluated. The anodic oxidation by Ni/ graphite modified electrode showed the complete degradation of aqueous solution indigocarmine, which is confirmed by UV-Visible and chemical oxygen demand (COD) measurements. The dye is converted into CO2, H2O and simpler inorganic salts. The results observed for reuse of modified electrodes indicate that the Ni/graphite modified electrode would be a promising anode for electrochemical degradation of indigocarmine. This method can be applied for the remediation of waste water containing organics, cost-effective and simple.展开更多
A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This...A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This thionine modified electrode exhibits two-new redox couples.Two protons were involved in the electrochemical process undergone by the couple I in the pH range of 5.0-10.0. The apparent surface electron transfer rate constant is about 0.050s-1.展开更多
The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon ele...The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.展开更多
A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The ...A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods. The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values. Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV. The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques. A calibration curve in the range of 0.03 to 2400 μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3?) under the optimized conditions. The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.展开更多
A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbicacid into two well-defined peak by 212 mV. ...A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbicacid into two well-defined peak by 212 mV. The mechanism of discrimination of dopamine fromascorbic acid is discussed. Dopamine can be determined selectively with the carbonnanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity andstability.展开更多
Poly-L-lysine(PLL) was first electrodeposited onto the surface of a glassy carbon(GC) electrode.The PLL modified electrode was used to immobilize chloroperoxidase(CPO) via 1-[(3-dimethylamino)propyl]-3-ethylcarbodiimi...Poly-L-lysine(PLL) was first electrodeposited onto the surface of a glassy carbon(GC) electrode.The PLL modified electrode was used to immobilize chloroperoxidase(CPO) via 1-[(3-dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride(EDC).The electrochemical behaviors of immobilized CPO on PLL/GC electrode were investigated by cyclic voltammetry(CV).The CV results obtained showed that CPO was successfully immobilized on the PLL/GC electrode and a fast direct electron transfer between CPO and PLL-GC electrod...展开更多
Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite elec...Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite electrode has high specific surface area and high current density. The electrode modified by transition metallic ions has improved catalysis behavior that can catalyze the V(Ⅱ)-V(Ⅴ) redox reaction showed by cyclic voltammograms. This article studied the impedance of the modified electrode by electrochemical impedance spectroscopy (EIS), and approved that the electrode modified by Co^2+ and Mn^2+ has a lower charge transfer resistance than the non-modified electrode. The effect of average particle size distribution is at lower frequencies that the slope of Warburg impedance is reduced by large particle size distribution. The voltage efficiency of the Co^2+ modified electrode test cell is 81.5%, which is higher than that of the non-modified electrode.展开更多
The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participa...The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participated in the diffusion-controlled electrocatalytic oxidation of dopamine with a diffusion coefficient of 2.186×10^(-5) cm^2/s.The interference of ascorbic acid with the determination of dopamine could be efficiently eliminated.This work provided a simple approach to selectively and sensitively de...展开更多
The electrocatalytic oxidation of methanol at the platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes (Eu-Fe film) was investigated for the first time by cyclic voltammetry.Compared with the bar...The electrocatalytic oxidation of methanol at the platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes (Eu-Fe film) was investigated for the first time by cyclic voltammetry.Compared with the bare platinum electrode,the results showed that the modified electrode had excellent electrocatalytic activity for the oxidation of methanol;the oxidation peak potential shifted more negatively and the peak current increased about twenty times.The electrooxidation of methanol at the modified elect...展开更多
The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hyd...The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.展开更多
A novel nano crystalline Ag2O2-PbO2 film chemically modified electrode (CME) was prepared and the CME was characterized by X-ray diffractometer (XRD) and atomic force microscope (AFM). By chronoamperometry, the nano A...A novel nano crystalline Ag2O2-PbO2 film chemically modified electrode (CME) was prepared and the CME was characterized by X-ray diffractometer (XRD) and atomic force microscope (AFM). By chronoamperometry, the nano Ag2O2-PbO2 CME was used as bioelectro- chemical sensor to determine the population of Escherichia coli (E. coli) in water. Compared with conventional methods, it is found that the technique we used is fast and convenient in counting E. coli.展开更多
The electrochemical behavior of pirarubicin(THP) and its interaction with DNA at a Co/GC modified electrode was studied by linear sweep and cyclic voltammetries. In a 0.01 mol/L B-R buffer solution(pH=7.0), the reacti...The electrochemical behavior of pirarubicin(THP) and its interaction with DNA at a Co/GC modified electrode was studied by linear sweep and cyclic voltammetries. In a 0.01 mol/L B-R buffer solution(pH=7.0), the reaction of DNA with THP formed an electrochemical nonactive complex, resulting in a decrease in the THP equilibrium concentration and its reduction current. The composition of the complex was THP∶DNA=2∶1. The combining constant is 2.73×10 10 . The electrode reaction rate constant k s and the electron transfer coefficient α are 1.32 s -1 and 0.56, respectively. The decrease in the peak current was proportional to the DNA concentration and was used to determine the DNA concentration. The experiment of XPS showed that Co was surely implanted into the surface of GCE(glassy carbon electrode) and the implanted Co at GCE can improve the electrocatalytic activity.展开更多
The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal....The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.展开更多
In this paper, a new method for the modification of glass carbon electrode (GCE) by polyethylenimine (PEI) and nano-gold (Au-colloid) was established to explore sensitive techniques for voltammetric determination of d...In this paper, a new method for the modification of glass carbon electrode (GCE) by polyethylenimine (PEI) and nano-gold (Au-colloid) was established to explore sensitive techniques for voltammetric determination of diethylstilbestrol. Compared with bare GCE, the peak current at the potential of 0.45 V is increased notably at PEI and PEI-nanogold modified electrode both by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This kind of electrode allows the detection of low concentration of diethylstilbestrol in the range of 0.03~12 mg/L by DPV measurement. Other optimizations for experimental conditions were also discussed in detail.展开更多
A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the ...A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry.展开更多
A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electroca...A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electrocatalytic oxidation of 6-mercaptopurine(6-MP). The CME can be used as the working electrode in the liquid chromatography for the determination of 6-MP. The peak current of 6-MP is linearly changed with its concentration ranging from 4.0×10 -7 to 1.0×10 -4 mol/L with the calculated detection limit (S/N=3) of 2.0×10 -7 mol/L. Coupled with microdialysis sampling, the method has been successfully applied to assessing the content of 6-MP in rat blood.展开更多
The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochem...The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).It was found that the SWCNT modified electrode could speed greatly up the electron transfer rate compared with the bare GC electrode.After the SWCNT was treated with alkali or mixed acids,the reaction rate and activation energy of NO electrooxidation were changed to different extent.Chemical modification of the SWCNT surface is one of the most powerful methods to change the sensitivity of NO electrooxidation reaction.The modified electrode with SWCNT obtained by the firstly alkali treatment and then the mixed acids treatment was the best one for NO electrooxidation,the result of CV was also confirmed by that of EIS.The anodic processes of NO were recognized more clearly by exploring the reaction mechanism of NO electrooxidation at the SWCNT modified electrode.展开更多
A new chemically modified carbon paste electrode for cesium(I) ion determination based on potassium zinc hexacyan-oferrate (PZHCF) as an ionophore was prepared. The electrode exhibits a Nernstian response for Cs(I) io...A new chemically modified carbon paste electrode for cesium(I) ion determination based on potassium zinc hexacyan-oferrate (PZHCF) as an ionophore was prepared. The electrode exhibits a Nernstian response for Cs(I) ions over a wide concentration range from 1 × 10-6 to 1 × 10-1 mol·L-1 with a slope of 58 ± 0.5 mV·decade-1. It has a response time of about 35 s and can be used for a period of 3 months with good reproducibility. Detection limit obtained in the optimal conditions was 3 × 10-7 mol·L-1. The potentiometric response is independent of the pH of the solution in the pH range 4.0 - 8.0. The electrode possesses the advantages of low resistance, fast response over a variety of other cations. The proposed electrode is applied as a sensor for the determination of Cs(I) ion concentration in different samples solutions. The results showed a good correlation with the data obtained by atomic absorption spectrometric method.展开更多
文摘L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.
文摘Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrode and the Ni/graphite modified electrode has been carried out. The different effects of concentration, current density and temperature on the rate of degradation were studied. This study shows that the rate of the degradation is more for Ni doped modified graphite electrode. UV-Visible spectra before and after degradation of the dye solution were observed. The thin film formation of Ni or encapsulated in graphite rod is observed by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM & EDAX). The instantaneous current effectiveness values of different experimental conditions are evaluated. The anodic oxidation by Ni/ graphite modified electrode showed the complete degradation of aqueous solution indigocarmine, which is confirmed by UV-Visible and chemical oxygen demand (COD) measurements. The dye is converted into CO2, H2O and simpler inorganic salts. The results observed for reuse of modified electrodes indicate that the Ni/graphite modified electrode would be a promising anode for electrochemical degradation of indigocarmine. This method can be applied for the remediation of waste water containing organics, cost-effective and simple.
文摘A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This thionine modified electrode exhibits two-new redox couples.Two protons were involved in the electrochemical process undergone by the couple I in the pH range of 5.0-10.0. The apparent surface electron transfer rate constant is about 0.050s-1.
文摘The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.
文摘A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods. The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values. Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV. The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques. A calibration curve in the range of 0.03 to 2400 μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3?) under the optimized conditions. The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.
文摘A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbicacid into two well-defined peak by 212 mV. The mechanism of discrimination of dopamine fromascorbic acid is discussed. Dopamine can be determined selectively with the carbonnanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity andstability.
基金supported by grant from National Natural Science Foundation of China(No.20775049).
文摘Poly-L-lysine(PLL) was first electrodeposited onto the surface of a glassy carbon(GC) electrode.The PLL modified electrode was used to immobilize chloroperoxidase(CPO) via 1-[(3-dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride(EDC).The electrochemical behaviors of immobilized CPO on PLL/GC electrode were investigated by cyclic voltammetry(CV).The CV results obtained showed that CPO was successfully immobilized on the PLL/GC electrode and a fast direct electron transfer between CPO and PLL-GC electrod...
基金This work was financially supported by the National Natural Science Foundation of China (No. 90510001).
文摘Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite electrode has high specific surface area and high current density. The electrode modified by transition metallic ions has improved catalysis behavior that can catalyze the V(Ⅱ)-V(Ⅴ) redox reaction showed by cyclic voltammograms. This article studied the impedance of the modified electrode by electrochemical impedance spectroscopy (EIS), and approved that the electrode modified by Co^2+ and Mn^2+ has a lower charge transfer resistance than the non-modified electrode. The effect of average particle size distribution is at lower frequencies that the slope of Warburg impedance is reduced by large particle size distribution. The voltage efficiency of the Co^2+ modified electrode test cell is 81.5%, which is higher than that of the non-modified electrode.
文摘The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participated in the diffusion-controlled electrocatalytic oxidation of dopamine with a diffusion coefficient of 2.186×10^(-5) cm^2/s.The interference of ascorbic acid with the determination of dopamine could be efficiently eliminated.This work provided a simple approach to selectively and sensitively de...
基金the Project of Natural Science Foundation of Gansu Province of their financial supports(No. 096RJZA117)
文摘The electrocatalytic oxidation of methanol at the platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes (Eu-Fe film) was investigated for the first time by cyclic voltammetry.Compared with the bare platinum electrode,the results showed that the modified electrode had excellent electrocatalytic activity for the oxidation of methanol;the oxidation peak potential shifted more negatively and the peak current increased about twenty times.The electrooxidation of methanol at the modified elect...
文摘The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.
基金We are greateful to the National Narural Science Foundation of China(No.20455017)Science and Technology Committee of Shanghai Municipal(No.0452nm084).
文摘A novel nano crystalline Ag2O2-PbO2 film chemically modified electrode (CME) was prepared and the CME was characterized by X-ray diffractometer (XRD) and atomic force microscope (AFM). By chronoamperometry, the nano Ag2O2-PbO2 CME was used as bioelectro- chemical sensor to determine the population of Escherichia coli (E. coli) in water. Compared with conventional methods, it is found that the technique we used is fast and convenient in counting E. coli.
基金the National Natural Science Foundation of China(No.2 0 2 75 0 0 7)
文摘The electrochemical behavior of pirarubicin(THP) and its interaction with DNA at a Co/GC modified electrode was studied by linear sweep and cyclic voltammetries. In a 0.01 mol/L B-R buffer solution(pH=7.0), the reaction of DNA with THP formed an electrochemical nonactive complex, resulting in a decrease in the THP equilibrium concentration and its reduction current. The composition of the complex was THP∶DNA=2∶1. The combining constant is 2.73×10 10 . The electrode reaction rate constant k s and the electron transfer coefficient α are 1.32 s -1 and 0.56, respectively. The decrease in the peak current was proportional to the DNA concentration and was used to determine the DNA concentration. The experiment of XPS showed that Co was surely implanted into the surface of GCE(glassy carbon electrode) and the implanted Co at GCE can improve the electrocatalytic activity.
基金Sponsored by Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2013ZX07201007)the Program for New Century Excellent Talents in University(Grant No.NCET-11-0795)
文摘The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.
文摘In this paper, a new method for the modification of glass carbon electrode (GCE) by polyethylenimine (PEI) and nano-gold (Au-colloid) was established to explore sensitive techniques for voltammetric determination of diethylstilbestrol. Compared with bare GCE, the peak current at the potential of 0.45 V is increased notably at PEI and PEI-nanogold modified electrode both by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This kind of electrode allows the detection of low concentration of diethylstilbestrol in the range of 0.03~12 mg/L by DPV measurement. Other optimizations for experimental conditions were also discussed in detail.
基金Supported by the National Natural Science Foundation of China(No.21065001)the Natural Science Foundation of Guangxi Province,China(Nos.0639025,0991084)+2 种基金the Support Program for 100 Young and Middle-aged Disciplinary Leaders in Higher Education Institutions of Guangxi Province,China(No.RC20060703005)the Project of Key Laboratory of Development and Application of Forest Chemicals of Guangxi Province,China(No.GXFC08-06)the Fund of Education Department of Guangxi Province,China(No.200812MS074)
文摘A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry.
文摘A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electrocatalytic oxidation of 6-mercaptopurine(6-MP). The CME can be used as the working electrode in the liquid chromatography for the determination of 6-MP. The peak current of 6-MP is linearly changed with its concentration ranging from 4.0×10 -7 to 1.0×10 -4 mol/L with the calculated detection limit (S/N=3) of 2.0×10 -7 mol/L. Coupled with microdialysis sampling, the method has been successfully applied to assessing the content of 6-MP in rat blood.
基金Supported by the National Natural Science Foundation of China(Nos.20676027 and 21076066)the Postdoctoral Foundation of Heilongjiang Province,China(No.LBH-Q07111)
文摘The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).It was found that the SWCNT modified electrode could speed greatly up the electron transfer rate compared with the bare GC electrode.After the SWCNT was treated with alkali or mixed acids,the reaction rate and activation energy of NO electrooxidation were changed to different extent.Chemical modification of the SWCNT surface is one of the most powerful methods to change the sensitivity of NO electrooxidation reaction.The modified electrode with SWCNT obtained by the firstly alkali treatment and then the mixed acids treatment was the best one for NO electrooxidation,the result of CV was also confirmed by that of EIS.The anodic processes of NO were recognized more clearly by exploring the reaction mechanism of NO electrooxidation at the SWCNT modified electrode.
文摘A new chemically modified carbon paste electrode for cesium(I) ion determination based on potassium zinc hexacyan-oferrate (PZHCF) as an ionophore was prepared. The electrode exhibits a Nernstian response for Cs(I) ions over a wide concentration range from 1 × 10-6 to 1 × 10-1 mol·L-1 with a slope of 58 ± 0.5 mV·decade-1. It has a response time of about 35 s and can be used for a period of 3 months with good reproducibility. Detection limit obtained in the optimal conditions was 3 × 10-7 mol·L-1. The potentiometric response is independent of the pH of the solution in the pH range 4.0 - 8.0. The electrode possesses the advantages of low resistance, fast response over a variety of other cations. The proposed electrode is applied as a sensor for the determination of Cs(I) ion concentration in different samples solutions. The results showed a good correlation with the data obtained by atomic absorption spectrometric method.