A special designed experiment was conducted for observing crack initiation and growth in P/M Rene95 superalloy under tension-tension loading by self-made SEM in-situ fatigue loading stag. Several alumina inclusion par...A special designed experiment was conducted for observing crack initiation and growth in P/M Rene95 superalloy under tension-tension loading by self-made SEM in-situ fatigue loading stag. Several alumina inclusion particles exposed at the specimen surface were observed carefully. During fatigue test inclusions led to cracks initiation. The cracks can be formed by two mechanisms. Generally, the cracks nucleated at the interface between inclusion and matrix. Sometimes, cracks were also formed inside the inclusion. As the increase of cycles, some cracks at the interface between inclusion and matrix broadened and propagated along the direction about 45 degrees to the loading axis. On the other hand, the cracks inside the inclusion propagated in the inclusion and towards matrix.展开更多
The low-cycle fatigue behavior of powder metallurgy Rene95 alloy containing surface inclusions was investigated by in-situ observation with scanning electron microscopy (SEM). The process of fatigue crack initiation...The low-cycle fatigue behavior of powder metallurgy Rene95 alloy containing surface inclusions was investigated by in-situ observation with scanning electron microscopy (SEM). The process of fatigue crack initiation and early stage of propagation behavior indicates that fatigue crack mainly occurs at the interface between the inclusion and the matrix. The effect of inclusion on the fatigue crack initiation and the early stage of crack growth was very obvious. The fatigue crack growth path in the matrix is similar to the shape of inclusion made on the basis of fatigue fracture image analysis. The empiric relation between the surface and inside crack growth length, near a surface inclusion, can be expressed. Therefore, the fatigue crack growth rate or life of P/M Rene95 alloy including the inclusions can be evaluated on the basis of the measurable surface crack length parameter. In addition, the effect of two inclusions on the fatigue crack initiation behavior was investigated by the in-situ observation with SEM.展开更多
To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at differen...To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.展开更多
This paper introduces a modified control cir- cuit of static tensile stage of Cambridge S-200 SEM.The function of the stage is extended to that of a tensile/compressive dynamic fatigue testing stage.It can be used for...This paper introduces a modified control cir- cuit of static tensile stage of Cambridge S-200 SEM.The function of the stage is extended to that of a tensile/compressive dynamic fatigue testing stage.It can be used for studying fatigue micro characteristic and crack growth.Direct observa- tions of small crack growth behaviour were carried out under the SEM with modified stage.Results showed the various stages in the development of a crack.展开更多
The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack t...The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack tip reveals to blunt firstly,and some holes and uncontinuous microcraeks occur in front of it.The growth is developed by bridging of main crack together with holes and microcracks.展开更多
Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is ...Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.展开更多
Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag pr...Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag proportions were considered.An experiment was conducted to obtain the fatigue lives at three stress levels in 20 Hz frequency and at a constant stress level of 0.59 in four frequency respectively.Mechanism and evaluation were investigated based on the experimental data.Fatigue life span models were established.The results show that the addition of polypropylene fibers improves the flexural fatigue cumulative strength and fatigue life span.It is proposed that the slag particles and hydrated products improve Interfacial Transition Zone(ITZ)structure and benefit flexural fatigue performance.A composite reinforce effect is found with the incorporation of slag and polypropylene fibers.The optimum mixture contents 55%slag with 0.6%polypropylene fiber for the cumulative fatigue stress.Fatigue properties are decreased as the stress level increasing,the higher frequency reduces the fatigue strength more than lower frequency at a constant stress level.展开更多
In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were ana...In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were analyzed via X-ray diffraction after dry-wet cycles. By combining in-situ SEM and digital image processing(DIP), the damage evolution process and damage characteristic parameters of each stage were obtained. The experimental results indicate that the hydration and dissolution of minerals can not be a determinant factor in structure damage. The micro-structural damage is due to disintegration of mineral aggregates, leading to changes in the number and size of cracks and pores. The damage degree of specimens is related to its initial structure, and the micro-structural damage intensifies and finally tends to stabilize with cycle times increased.展开更多
There is no doubt that an understanding of brittle rock fracturing is a key element in the solution of many engineering problems that involve rock structures. Some rock structures such as bridge and dam abutments and ...There is no doubt that an understanding of brittle rock fracturing is a key element in the solution of many engineering problems that involve rock structures. Some rock structures such as bridge and dam abutments and foundations, and tunnel walls, undergo both static and cyclic loading caused by drilling and blasting, and vehicle-induced vibrations. This type of loading often causes rock to fail at a lower than its static strength due to the effect of rock fatigue. A series of laboratory diametrical compression tests was performed on Brisbane tuff disc specimens to investigate their mode-I fracture toughness response to static and cyclic loading, as a function of the applied load. Both the static and cyclic loading tests were carried out on CCNBD (cracked chevron notched Brazilian disc) rock specimens. In the tests described herein, the reduction in fracture toughness under dynamic cyclic loading was found to be up to 48% of the static fracture toughness. Contrary to the static tests, the cyclic tests produced much more crushed material in front of the tip of the chevron notched crack.展开更多
This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are ba...This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respec- tively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.展开更多
In order to investigate the influence of natural defect on the fatigue behavior of 5A06/7A05 dissimilar aluminum alloys welding joint,fatigue tests of two types of specimens with and without defects were carried out s...In order to investigate the influence of natural defect on the fatigue behavior of 5A06/7A05 dissimilar aluminum alloys welding joint,fatigue tests of two types of specimens with and without defects were carried out systematically under stress amplitude control conditions (stress ratio R=0.1) at normal temperature in laboratory air condition.Furthermore,a new parameter,i e,fatigue defect effect factor (FDEF) was introduced to assess the effect of defect on fatigue strength.The fatigue failure analysis was conducted as well to compare the fatigue and fracture behavior of the two types of specimens.The results show that:(1) natural defects have a strong effect on the fatigue lives of welding joint,and the differences between the specimens with and without defects can reach 80 times under a same theoretical net sectional stress;(2) the FDEF parameter introduced is effective to deal with the defect effect,and the FDEF decreases along with the increase of fatigue life.The mean relative error between the experimental data and predicted fatigue strength based on the FDEF is 10.2%;(3) the macro fracture of both types of specimens have three typical zones,i e,fatigue source zone,crack propagation zone and final fracture zone,while there are more than one fatigue sources for specimens with natural defects.The overall pattern of crack propagation zone and fracture zone are quite similar,but the morphologies are different in details.展开更多
The observation on crack initiation and propagation of surface inclusion Al2O3 in seeded PM Rene95 was conducted by SEM in-situ tension test. The results show that the cracks often initiate at the inclusion/matrix int...The observation on crack initiation and propagation of surface inclusion Al2O3 in seeded PM Rene95 was conducted by SEM in-situ tension test. The results show that the cracks often initiate at the inclusion/matrix interface vertical to the applied stress direction, and easily propagate along the interface into the matrix. The interface of inclusion/matrix is just mechanically bounded on the base of SEM observation. The weak bonding of inclusion/matrix interface and stress concentration around inclusions are the main reasons of the matrix/inclusion interface debonding and local plastic deformation under the tensile loading in the in-situ tension test. Surface inclusion does not definitely lead to the failure of in-situ tension test. But the early surface crack initiation caused by ceramic inclusion is critically harmful to the LCF property of PM Rene95 superalloy, which can't be ignored.展开更多
The strengthening effect of a Zn alloy reinforced by SiC particulate was examined. Based on the results of SEM in-situ fracture observation and stress field analysis by finite element method, it is believed that the r...The strengthening effect of a Zn alloy reinforced by SiC particulate was examined. Based on the results of SEM in-situ fracture observation and stress field analysis by finite element method, it is believed that the reinforcing effect of this composite is due to the combination of strain and stress hardening in the matrix.展开更多
Valve spring steel for engines, belonging to the class of super clean steel, must be supported due to their application, high numbers of cycles in fatigue and cannot suffer any type of failure, which would be catastro...Valve spring steel for engines, belonging to the class of super clean steel, must be supported due to their application, high numbers of cycles in fatigue and cannot suffer any type of failure, which would be catastrophic for the vehicle. From these considerations, it was tested in axial fatigue, a test that can detect possible internal defects in their structure, caused by inclusions, a class of valve spring steel, where it aimed to discover the values of their fatigue life, followed by an analysis ofmicrostructural fracture surface by SEM (scanning electron microscopy). It was proved, after testing, the specimens tested broke up a number of cycles always compatible with the life work of a valve spring and that fractures always occurred by surface defects in the specimens.展开更多
With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this secto...With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this sector,as it is endowed with the optical properties of both metal and semiconductors.However,its widespread application got delineated because of its irregular rigid form,level of conductivity,and precise choice of solvents.Incorporating PANI in textile materials can generate promising functionality for wearable applications.This research work employed a straightforward in-situ chemical oxidative polymerization to synthesize PANI on Cotton fabric surfaces with varying dopant(HCl)concentrations.Pre-treatment using NaOH is implemented to improve the conductivity of the fabric surface by increasing the monomer absorption.This research explores the morphological and structural analysis employing SEM,FTIR and EDX.The surface resistivity was measured using a digital multimeter,and thermal stability is measured using TGA.Upon successful polymerization,a homogenous coating layer is observed.It is revealed that the simple pre-treatment technique significantly reduces the surface resistivity of Cotton fabric to 1.27 kΩ/cm with increasing acid concentration and thermal stability.The electro-thermal energy can also reach up to 38.2°C within 50 s with a deployed voltage of 15 V.The modified fabric is anticipated to be used in thermal regulation,supercapacitor,sensor,UV shielding,antimicrobial and other prospective functional applications.展开更多
In th is study, th e m eso-failure m ech an ism an d fracture surface o f Jinping m arble w ere investigated bym ean s o f scanning electro n m icroscope (SEM) w ith ben d in g loading system and laser-scanner equip...In th is study, th e m eso-failure m ech an ism an d fracture surface o f Jinping m arble w ere investigated bym ean s o f scanning electro n m icroscope (SEM) w ith ben d in g loading system and laser-scanner equipment. The Y antang an d B aishan m arbles specim ens from Jinping II hyd ro p o w er sta tio n w ere used. Testresu lts show th a t th e fracture to u g h n ess and m echanical behaviors o f Y antang m arble w ere basicallyh ig h er th a n th o se o f Baishan m arble. This is m ainly d u e to th e fact th a t Baishan m arble co n tain s a largep ercen tag e o f d o lom ite an d m in o r mica. Crack pro p ag atio n p a th and fracture m orphology in d icated th a tth e d irection o f ten sile stress has a significant effect on th e m echanical behaviors an d fracture toughnesso f B aishan m arble. For Yantang an d B aishan m arbles, a large n u m b e r o f m icrocracks a ro u n d th e m aincrack tip w ere observed w h e n th e directio n o f ten sile stress w as parallel to th e bed d in g plane.C onversely, few m icrocracks o ccurred w h e n th e directio n o f ten sile stress w as p erp en d icu lar to th ebed d in g plane. The presen ce o f a large n u m b e r o f m icrocracks a t th e m ain crack tip d ecreased th e globalfracture to u g h n ess o f m arble. The results o f th re e -p o in t ben d in g te sts show ed th a t th e average bearingcapacity o f intact m arble is 3.4 tim es th e notch ed m arble, b u t th e ductility p ro p e rty o f th e defectivem arble afte r p eak load is b e tte r th a n th a t o f th e intact m arble. H ence, large d efo rm atio n m ay beg en erated before failure o f in tact m arbles a t Jinping II h y d ro p o w er station. The fractal d im en sio n o ffracture surface w as also calculated by th e cube covering m eth o d . O bservational resu lt show ed th a t th elargest fractal dim en sio n o f Y antang m arble is cap tu red w h e n th e directio n o f ten sile stress is parallel toth e bedding plane. H ow ever, th e fractal d im en sio n o f fracture surface o f Yantang an d Baishan m arblesw ith ten sile stress vertical to th e bed d in g plane is relatively sm all. The fractal d im en sio n can also be usedto characterize th e ro ughness o f fracture surface o f rock m aterials.展开更多
基金the National Natural Science Foundation of China, No. 59871007.]
文摘A special designed experiment was conducted for observing crack initiation and growth in P/M Rene95 superalloy under tension-tension loading by self-made SEM in-situ fatigue loading stag. Several alumina inclusion particles exposed at the specimen surface were observed carefully. During fatigue test inclusions led to cracks initiation. The cracks can be formed by two mechanisms. Generally, the cracks nucleated at the interface between inclusion and matrix. Sometimes, cracks were also formed inside the inclusion. As the increase of cycles, some cracks at the interface between inclusion and matrix broadened and propagated along the direction about 45 degrees to the loading axis. On the other hand, the cracks inside the inclusion propagated in the inclusion and towards matrix.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50571047) and the National BasicResearch Program of China (No.2004CB619304).
文摘The low-cycle fatigue behavior of powder metallurgy Rene95 alloy containing surface inclusions was investigated by in-situ observation with scanning electron microscopy (SEM). The process of fatigue crack initiation and early stage of propagation behavior indicates that fatigue crack mainly occurs at the interface between the inclusion and the matrix. The effect of inclusion on the fatigue crack initiation and the early stage of crack growth was very obvious. The fatigue crack growth path in the matrix is similar to the shape of inclusion made on the basis of fatigue fracture image analysis. The empiric relation between the surface and inside crack growth length, near a surface inclusion, can be expressed. Therefore, the fatigue crack growth rate or life of P/M Rene95 alloy including the inclusions can be evaluated on the basis of the measurable surface crack length parameter. In addition, the effect of two inclusions on the fatigue crack initiation behavior was investigated by the in-situ observation with SEM.
基金Key Subject for Science Research and De-velopment Plan of Railway Ministry (No.2006G004-B)
文摘To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.
文摘This paper introduces a modified control cir- cuit of static tensile stage of Cambridge S-200 SEM.The function of the stage is extended to that of a tensile/compressive dynamic fatigue testing stage.It can be used for studying fatigue micro characteristic and crack growth.Direct observa- tions of small crack growth behaviour were carried out under the SEM with modified stage.Results showed the various stages in the development of a crack.
文摘The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack tip reveals to blunt firstly,and some holes and uncontinuous microcraeks occur in front of it.The growth is developed by bridging of main crack together with holes and microcracks.
基金supported by Swedish Institute of Sweden (No. 200/01954/2007/China Bilateral programme)
文摘Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.
基金Funded by the National Science and Technology Support Plan (No.2006BAD11B03)Shaanxi Provincial Natural Science Foundation(No.SJ08E111)
文摘Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag proportions were considered.An experiment was conducted to obtain the fatigue lives at three stress levels in 20 Hz frequency and at a constant stress level of 0.59 in four frequency respectively.Mechanism and evaluation were investigated based on the experimental data.Fatigue life span models were established.The results show that the addition of polypropylene fibers improves the flexural fatigue cumulative strength and fatigue life span.It is proposed that the slag particles and hydrated products improve Interfacial Transition Zone(ITZ)structure and benefit flexural fatigue performance.A composite reinforce effect is found with the incorporation of slag and polypropylene fibers.The optimum mixture contents 55%slag with 0.6%polypropylene fiber for the cumulative fatigue stress.Fatigue properties are decreased as the stress level increasing,the higher frequency reduces the fatigue strength more than lower frequency at a constant stress level.
基金Funded by the National Natural Science Foundation of China(No.51574201)the Research and Innovation Team of Provincial U niversities in Sichuan(18TD0014)the Excellent Youth Foundat ion of Sichuan Scientific Committee(2019JDJQ0037)
文摘In order to reflect truly the damage evolution mechanism of weak muddy intercalation in dry-wet cycles, two typical weak muddy intercalations were selected for dry-wet cycles. The mineral changes of specimens were analyzed via X-ray diffraction after dry-wet cycles. By combining in-situ SEM and digital image processing(DIP), the damage evolution process and damage characteristic parameters of each stage were obtained. The experimental results indicate that the hydration and dissolution of minerals can not be a determinant factor in structure damage. The micro-structural damage is due to disintegration of mineral aggregates, leading to changes in the number and size of cracks and pores. The damage degree of specimens is related to its initial structure, and the micro-structural damage intensifies and finally tends to stabilize with cycle times increased.
文摘There is no doubt that an understanding of brittle rock fracturing is a key element in the solution of many engineering problems that involve rock structures. Some rock structures such as bridge and dam abutments and foundations, and tunnel walls, undergo both static and cyclic loading caused by drilling and blasting, and vehicle-induced vibrations. This type of loading often causes rock to fail at a lower than its static strength due to the effect of rock fatigue. A series of laboratory diametrical compression tests was performed on Brisbane tuff disc specimens to investigate their mode-I fracture toughness response to static and cyclic loading, as a function of the applied load. Both the static and cyclic loading tests were carried out on CCNBD (cracked chevron notched Brazilian disc) rock specimens. In the tests described herein, the reduction in fracture toughness under dynamic cyclic loading was found to be up to 48% of the static fracture toughness. Contrary to the static tests, the cyclic tests produced much more crushed material in front of the tip of the chevron notched crack.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB631006)the National Natural Science Foundation of China(GrantNos.11072124 and 11272173)
文摘This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respec- tively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.
基金Funded by the Special Research on Civil Aircraft Quality,Airworthiness and Accident Investigation System (Phase I)-Quality and Reliability Assurance Systemthe National Natural Science Foundation of China (No. 51805500)Technical Foundation Project of Defense Industrial Technology Development Program (No. JSZL2019205C003)。
文摘In order to investigate the influence of natural defect on the fatigue behavior of 5A06/7A05 dissimilar aluminum alloys welding joint,fatigue tests of two types of specimens with and without defects were carried out systematically under stress amplitude control conditions (stress ratio R=0.1) at normal temperature in laboratory air condition.Furthermore,a new parameter,i e,fatigue defect effect factor (FDEF) was introduced to assess the effect of defect on fatigue strength.The fatigue failure analysis was conducted as well to compare the fatigue and fracture behavior of the two types of specimens.The results show that:(1) natural defects have a strong effect on the fatigue lives of welding joint,and the differences between the specimens with and without defects can reach 80 times under a same theoretical net sectional stress;(2) the FDEF parameter introduced is effective to deal with the defect effect,and the FDEF decreases along with the increase of fatigue life.The mean relative error between the experimental data and predicted fatigue strength based on the FDEF is 10.2%;(3) the macro fracture of both types of specimens have three typical zones,i e,fatigue source zone,crack propagation zone and final fracture zone,while there are more than one fatigue sources for specimens with natural defects.The overall pattern of crack propagation zone and fracture zone are quite similar,but the morphologies are different in details.
基金This work was financially supported by the National Nature Science Foundation of China (No.59871007)PM Rene95 materialofferi
文摘The observation on crack initiation and propagation of surface inclusion Al2O3 in seeded PM Rene95 was conducted by SEM in-situ tension test. The results show that the cracks often initiate at the inclusion/matrix interface vertical to the applied stress direction, and easily propagate along the interface into the matrix. The interface of inclusion/matrix is just mechanically bounded on the base of SEM observation. The weak bonding of inclusion/matrix interface and stress concentration around inclusions are the main reasons of the matrix/inclusion interface debonding and local plastic deformation under the tensile loading in the in-situ tension test. Surface inclusion does not definitely lead to the failure of in-situ tension test. But the early surface crack initiation caused by ceramic inclusion is critically harmful to the LCF property of PM Rene95 superalloy, which can't be ignored.
基金This project is supported by the National Natural Science Foundation of China(No.59971017).
文摘The strengthening effect of a Zn alloy reinforced by SiC particulate was examined. Based on the results of SEM in-situ fracture observation and stress field analysis by finite element method, it is believed that the reinforcing effect of this composite is due to the combination of strain and stress hardening in the matrix.
文摘Valve spring steel for engines, belonging to the class of super clean steel, must be supported due to their application, high numbers of cycles in fatigue and cannot suffer any type of failure, which would be catastrophic for the vehicle. From these considerations, it was tested in axial fatigue, a test that can detect possible internal defects in their structure, caused by inclusions, a class of valve spring steel, where it aimed to discover the values of their fatigue life, followed by an analysis ofmicrostructural fracture surface by SEM (scanning electron microscopy). It was proved, after testing, the specimens tested broke up a number of cycles always compatible with the life work of a valve spring and that fractures always occurred by surface defects in the specimens.
基金This work is supported by the International Publication Research Grant No.RDU223301 and Postgraduate Research Grant Scheme,UMP,Malaysia(PGRS210370).
文摘With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this sector,as it is endowed with the optical properties of both metal and semiconductors.However,its widespread application got delineated because of its irregular rigid form,level of conductivity,and precise choice of solvents.Incorporating PANI in textile materials can generate promising functionality for wearable applications.This research work employed a straightforward in-situ chemical oxidative polymerization to synthesize PANI on Cotton fabric surfaces with varying dopant(HCl)concentrations.Pre-treatment using NaOH is implemented to improve the conductivity of the fabric surface by increasing the monomer absorption.This research explores the morphological and structural analysis employing SEM,FTIR and EDX.The surface resistivity was measured using a digital multimeter,and thermal stability is measured using TGA.Upon successful polymerization,a homogenous coating layer is observed.It is revealed that the simple pre-treatment technique significantly reduces the surface resistivity of Cotton fabric to 1.27 kΩ/cm with increasing acid concentration and thermal stability.The electro-thermal energy can also reach up to 38.2°C within 50 s with a deployed voltage of 15 V.The modified fabric is anticipated to be used in thermal regulation,supercapacitor,sensor,UV shielding,antimicrobial and other prospective functional applications.
基金supported by the National Natural Science Foundation of China (No. 51374215)Fok Ying Tung Education Foundation (No. 142018)+1 种基金Beijing Major Scientific and Technological Achievements into Ground Cultivation Project, the 111 Project (B14006)the National Excellent Doctoral Dissertation of China (No. 201030)
文摘In th is study, th e m eso-failure m ech an ism an d fracture surface o f Jinping m arble w ere investigated bym ean s o f scanning electro n m icroscope (SEM) w ith ben d in g loading system and laser-scanner equipment. The Y antang an d B aishan m arbles specim ens from Jinping II hyd ro p o w er sta tio n w ere used. Testresu lts show th a t th e fracture to u g h n ess and m echanical behaviors o f Y antang m arble w ere basicallyh ig h er th a n th o se o f Baishan m arble. This is m ainly d u e to th e fact th a t Baishan m arble co n tain s a largep ercen tag e o f d o lom ite an d m in o r mica. Crack pro p ag atio n p a th and fracture m orphology in d icated th a tth e d irection o f ten sile stress has a significant effect on th e m echanical behaviors an d fracture toughnesso f B aishan m arble. For Yantang an d B aishan m arbles, a large n u m b e r o f m icrocracks a ro u n d th e m aincrack tip w ere observed w h e n th e directio n o f ten sile stress w as parallel to th e bed d in g plane.C onversely, few m icrocracks o ccurred w h e n th e directio n o f ten sile stress w as p erp en d icu lar to th ebed d in g plane. The presen ce o f a large n u m b e r o f m icrocracks a t th e m ain crack tip d ecreased th e globalfracture to u g h n ess o f m arble. The results o f th re e -p o in t ben d in g te sts show ed th a t th e average bearingcapacity o f intact m arble is 3.4 tim es th e notch ed m arble, b u t th e ductility p ro p e rty o f th e defectivem arble afte r p eak load is b e tte r th a n th a t o f th e intact m arble. H ence, large d efo rm atio n m ay beg en erated before failure o f in tact m arbles a t Jinping II h y d ro p o w er station. The fractal d im en sio n o ffracture surface w as also calculated by th e cube covering m eth o d . O bservational resu lt show ed th a t th elargest fractal dim en sio n o f Y antang m arble is cap tu red w h e n th e directio n o f ten sile stress is parallel toth e bedding plane. H ow ever, th e fractal d im en sio n o f fracture surface o f Yantang an d Baishan m arblesw ith ten sile stress vertical to th e bed d in g plane is relatively sm all. The fractal d im en sio n can also be usedto characterize th e ro ughness o f fracture surface o f rock m aterials.