Flower shaped antimony oxide (Sb2O3) microstructures were synthesized in a large quantity via simple solution method using aqueous mixtures of antimony chloride and hexamethylene diamine (HMDA). The morphological char...Flower shaped antimony oxide (Sb2O3) microstructures were synthesized in a large quantity via simple solution method using aqueous mixtures of antimony chloride and hexamethylene diamine (HMDA). The morphological characterizations were done by field emission scanning electron microscopy (FESEM), which revealed that the synthesized products possess flower-shaped microstructures. The detailed structural characterizations performed by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FT-IR) and Raman spectrophotometer confirmed that the synthesized microstructures are well-crystalline antimony oxide. The Energy dispersive spectroscopy (EDS) shows that the grown products are composed of Sb and O. Optical properties of the synthesized products were characterized by UV-Visible spectrophotometer which exhibits a well defined peak at ~ 291.0 nm. The photo-catalytic activity of the Sb2O3 microstructures was evaluated by degradation of acridine orange (AO), which mineralized almost 63.0% in 150 min. The chemical sensing properties of Sb2O3 microstructures was also studied by I-V technique using chloroform as a detecting solvent. The fabricated chloroform sensor demonstrates good sensitivity of 0.1154 μA cm–2 mM–1, lower-detection limit (~0.1 mM), large-linear dynamic range (LDR, 0.122 mM to 1.22 M) with linearity (R = 0.7898) in short response time (10.0 sec).展开更多
文摘Flower shaped antimony oxide (Sb2O3) microstructures were synthesized in a large quantity via simple solution method using aqueous mixtures of antimony chloride and hexamethylene diamine (HMDA). The morphological characterizations were done by field emission scanning electron microscopy (FESEM), which revealed that the synthesized products possess flower-shaped microstructures. The detailed structural characterizations performed by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FT-IR) and Raman spectrophotometer confirmed that the synthesized microstructures are well-crystalline antimony oxide. The Energy dispersive spectroscopy (EDS) shows that the grown products are composed of Sb and O. Optical properties of the synthesized products were characterized by UV-Visible spectrophotometer which exhibits a well defined peak at ~ 291.0 nm. The photo-catalytic activity of the Sb2O3 microstructures was evaluated by degradation of acridine orange (AO), which mineralized almost 63.0% in 150 min. The chemical sensing properties of Sb2O3 microstructures was also studied by I-V technique using chloroform as a detecting solvent. The fabricated chloroform sensor demonstrates good sensitivity of 0.1154 μA cm–2 mM–1, lower-detection limit (~0.1 mM), large-linear dynamic range (LDR, 0.122 mM to 1.22 M) with linearity (R = 0.7898) in short response time (10.0 sec).