期刊文献+
共找到2,220篇文章
< 1 2 111 >
每页显示 20 50 100
Pinning energies of organic semiconductors in high-efficiency organic solar cells 被引量:1
1
作者 Xian’e Li Qilun Zhang +1 位作者 Xianjie Liu Mats Fahlman 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期52-61,共10页
With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning ener... With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning energies,one of the critical characteristics of the material to predict the energy level alignment(ELA)at either electrode/organic or organic/organic interfaces,are urgently needed for the new materials.Here,pinning energies of a wide variety of newly developed donors and nonfullerene acceptors(NFAs)are measured through ultraviolet photoelectron spectroscopy.The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3−4.6 eV,which follows the design rules developed for fullerene-based OSCs.The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied.For organic-organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer,the pinning energies often underestimate the experimentally obtained interface vacuum level shift,which has consequences for OSC device performance. 展开更多
关键词 organic semiconductors organic solar cells pinning energies integer charge transfer interface dipoles
下载PDF
The room temperature ferromagnetism in highly strained twodimensional magnetic semiconductors 被引量:1
2
作者 Dahai Wei 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期13-14,共2页
In spintronics,it is still a challenge in experiments to realize the ferromagnetic semiconductors with Curie temperature Tc above room temperature.In 2017,the successful synthesis of two-dimensional(2D)van der Waals f... In spintronics,it is still a challenge in experiments to realize the ferromagnetic semiconductors with Curie temperature Tc above room temperature.In 2017,the successful synthesis of two-dimensional(2D)van der Waals ferromagnetic semiconductors,including the monolayer CrI3 with Tc=45 K[1]and the bilayer Cr2Ge2Te6 with Tc=28 K[2]in experiments,has attracted extensive attention in the 2D ferromagnetic semiconductors.One of the key problems is to find suitable 2D magnetic semiconductors,which can have room-temperature operation as required in applications. 展开更多
关键词 TEMPERATURE semiconductors FERROMAGNETIC
下载PDF
Two-dimensional transition metal halide PdX_(2)(X=F,Cl,Br,I):A promising candidate of bipolar magnetic semiconductors
3
作者 陈苗苗 李胜世 +1 位作者 纪维霄 张昌文 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期481-488,共8页
Two-dimensional(2D)nanomaterials with bipolar magnetism show great promise in spintronic applications.Manipulating carriers'spin-polarized orientation in bipolar magnetic semiconductor(BMS)requires a gate voltage,... Two-dimensional(2D)nanomaterials with bipolar magnetism show great promise in spintronic applications.Manipulating carriers'spin-polarized orientation in bipolar magnetic semiconductor(BMS)requires a gate voltage,but that is volatile.Recently,a new method has been proposed to solve the problem of volatility by introducing a ferroelectric gate with proper band alignment.In this paper,we predict that the PdX_(2)(X=F,Cl,Br,I)monolayers are 2D ferromagnetic BMS with dynamic stability,thermal stability,and mechanical stability by first-principles calculations.The critical temperatures are higher than the boiling point of liquid nitrogen and the BMS characteristics are robust against external strains and electric fields for PdCl_(2) and PdBr_(2).Then,we manipulate the spin-polarization of PdCl_(2) and PdBr_(2) by introducing a ferroelectric gate to enable magnetic half-metal/semiconductor switching and spin-up/down polarization switching control.Two kinds of spin devices(multiferroic memory and spin filter)have been proposed to realize the spin-polarized directions of electrons.These results demonstrate that PdCl_(2) and PdBr_(2) with BMS characters can be widely used as a general material structure for spintronic devices. 展开更多
关键词 PdX_(2)(X=F CL BR I) bipolar magnetic semiconductors first-principles calculations
下载PDF
Valley polarization in transition metal dichalcogenide layered semiconductors:Generation,relaxation,manipulation and transport
4
作者 马惠 朱耀杰 +4 位作者 刘宇伦 白瑞雪 张喜林 任琰博 蒋崇云 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期1-14,共14页
In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–va... In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–valley coupling in this system,which provides spin addressable valley degrees of freedom for information storage and processing.On the other hand,large exciton binding energy up to hundreds of me V enables excitons to be stable carriers of valley information.Valley polarization,marked by an imbalanced exciton population in two inequivalent valleys(+K and-K),is the core of valleytronics as it can be utilized to store binary information.Motivated by the potential applications,we present a thorough overview of the recent advancements in the generation,relaxation,manipulation,and transport of the valley polarization in nonmagnetic transition metal dichalcogenide layered semiconductors.We also discuss the development of valleytronic devices and future challenges in this field. 展开更多
关键词 valley polarization nonmagnetic transition metal dichalcogenide layered semiconductors EXCITON
下载PDF
Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration
5
作者 Zhuofan Chen Xiaonan Deng +11 位作者 Simian Zhang Yuqi Wang Yifei Wu Shengxian Ke Junshang Zhang Fucheng Liu Jianing Liu Yingjie Liu Yuchun Lin Andrew Hanna Zhengcao Li Chen Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期1-35,共35页
As Moore’s law deteriorates,the research and development of new materials system are crucial for transitioning into the post Moore era.Traditional semiconductor materials,such as silicon,have served as the cornerston... As Moore’s law deteriorates,the research and development of new materials system are crucial for transitioning into the post Moore era.Traditional semiconductor materials,such as silicon,have served as the cornerstone of modern technologies for over half a century.This has been due to extensive research and engineering on new techniques to continuously enrich silicon-based materials system and,subsequently,to develop better performed silicon-based devices.Meanwhile,in the emerging post Moore era,layered semiconductor materials,such as transition metal dichalcogenides(TMDs),have garnered considerable research interest due to their unique electronic and optoelectronic properties,which hold great promise for powering the new era of next generation electronics.As a result,techniques for engineering the properties of layered semiconductors have expanded the possibilities of layered semiconductor-based devices.However,there remain significant limitations in the synthesis and engineering of layered semiconductors,impeding the utilization of layered semiconductor-based devices for mass applications.As a practical alternative,heterogeneous integration between layered and traditional semiconductors provides valuable opportunities to combine the distinctive properties of layered semiconductors with well-developed traditional semiconductors materials system.Here,we provide an overview of the comparative coherence between layered and traditional semiconductors,starting with TMDs as the representation of layered semiconductors.We highlight the meaningful opportunities presented by the heterogeneous integration of layered semiconductors with traditional semiconductors,representing an optimal strategy poised to propel the emerging semiconductor research community and chip industry towards unprecedented advancements in the coming decades. 展开更多
关键词 heterogeneous integration van der Waals heterostructure post Moore era layered semiconductor transition metal dichalcogenide layered-traditional semiconductor heterostructure
下载PDF
p‑Type Two‑Dimensional Semiconductors:From Materials Preparation to Electronic Applications
6
作者 Lei Tang Jingyun Zou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期242-270,共29页
Two-dimensional(2D)materials are regarded as promising candidates in many applications,including electronics and optoelectronics,because of their superior properties,including atomic-level thickness,tunable bandgaps,l... Two-dimensional(2D)materials are regarded as promising candidates in many applications,including electronics and optoelectronics,because of their superior properties,including atomic-level thickness,tunable bandgaps,large specific surface area,and high carrier mobility.In order to bring 2D materials from the laboratory to industrialized applications,materials preparation is the first prerequisite.Compared to the n-type analogs,the family of p-type 2D semiconductors is relatively small,which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits.So far,many efforts have been made in the preparation of p-type 2D semiconductors.In this review,we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top-down and bottom-up strategies.Then,we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities.In end,we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors,their controlled mass preparation,compatible engineering with silicon production line,high-κdielectric materials,to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices.Overall,we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics. 展开更多
关键词 Two-dimensional materials p-type semiconductor TOP-DOWN BOTTOM-UP ELECTRONICS OPTOELECTRONICS
下载PDF
Recent progress on ambipolar 2D semiconductors in emergent reconfigurable electronics and optoelectronics
7
作者 赵月豪 孙浩然 +3 位作者 盛喆 张卫 周鹏 张增星 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期21-39,共19页
In these days,the increasing massive data are being produced and demanded to be processed with the rapid growth of information technology.It is difficult to rely solely on the shrinking of semiconductor devices and sc... In these days,the increasing massive data are being produced and demanded to be processed with the rapid growth of information technology.It is difficult to rely solely on the shrinking of semiconductor devices and scale-up of the integrated circuits(ICs)again in the foreseeable future.Exploring new materials,new-principle semiconductor devices and new computing architectures is becoming an urgent topic in this field.Ambipolar two-dimensional(2D)semiconductors,possessing excellent electrostatic field controllability and flexibly modulated major charge carriers,offer a possibility to construct reconfigurable devices and enable the ICs with new functions,showing great potential in computing capacity,energy efficiency,time delay and cost.This review focuses on the recent significant advancements in reconfigurable electronic and optoelectronic devices of ambipolar 2D semiconductors,and demonstrates their potential approach towards ICs,like reconfigurable circuits and neuromorphic chips.It is expected to help readers understand the device design principle of ambipolar 2D semiconductors,and push forward exploring more new-principle devices and new-architecture computing circuits,and even their product applications. 展开更多
关键词 two-dimensional material ambipolar semiconductor semiconductor device
下载PDF
Discovery of new potential magnetic semiconductors in quaternary Heusler compounds by addition of lanthanides
8
作者 郭金 冯时怡 +3 位作者 陶容 王国霞 王越 刘志锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期589-593,共5页
Magnetic semiconductors have attracted a lot of attention by having both electronic charge and spin degrees of freedom. In this paper, we obtained twenty magnetic semiconductors such as FeVLaSb, FeVPrSb, FeCrTbSi, CoV... Magnetic semiconductors have attracted a lot of attention by having both electronic charge and spin degrees of freedom. In this paper, we obtained twenty magnetic semiconductors such as FeVLaSb, FeVPrSb, FeCrTbSi, CoVDySi, and CoVHoSi by adding lanthanides to quaternary Heusler compounds based on the Slater-Pauling law and orbital hybridization theory. The relationship between the lattice constants and energy gaps of the magnetic semiconductors with lanthanide elements is investigated by in-depth analysis. These magnetic semiconductors of quaternary Heusler compounds are promising candidates to find applications as spin filtering materials in spintronics devices. 展开更多
关键词 magnetic semiconductor rare-earth element quaternary Heusler compounds
下载PDF
A family of flexible two-dimensional semiconductors:MgMX2Y6(M=Ti/Zr/Hf;X=Si/Ge;Y=S/Se/Te)
9
作者 Junhui Yuan Kanhao Xue +1 位作者 Xiangshui Miao Lei Ye 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期70-80,共11页
Inspired by the recently predicted 2D MX_(2)Y_(6)(M=metal element;X=Si/Ge/Sn;Y=S/Se/Te),we explore the possible applications of alkaline earth metal(using magnesium as example)in this family based on the idea of eleme... Inspired by the recently predicted 2D MX_(2)Y_(6)(M=metal element;X=Si/Ge/Sn;Y=S/Se/Te),we explore the possible applications of alkaline earth metal(using magnesium as example)in this family based on the idea of element replacement and valence electron balance.Herein,we report a new family of 2D quaternary compounds,namely MgMX_(2)Y_(6)(M=Ti/Zr/Hf;X=Si/Ge;Y=S/Se/Te)monolayers,with superior kinetic,thermodynamic and mechanical stability.In addition,our results indicate that MgMX_(2)Y_(6)monolayers are all indirect band gap semiconductors with band gap values ranging from 0.870 to 2.500 eV.Moreover,the band edges and optical properties of 2D MgMX_(2)Y_(6)are suitable for constructing multifunctional optoelectronic devices.Furthermore,for comparison,the mechanical,electronic and optical properties of In_(2)X_(2)Y_(6)monolayers have been discussed in detail.The success of introducing Mg into the 2D MX_(2)Y_(6)family indicates that more potential materials,such as Caand Sr-based 2D MX_(2)Y_(6)monolayers,may be discovered in the future.Therefore,this work not only broadens the existing family of 2D semiconductors,but it also provides beneficial results for the future. 展开更多
关键词 two-dimensional materials MgMX_(2)Y_(6)monolayer In2X2Y6 monolayer SEMICONDUCTOR first-principles calculations
下载PDF
Ultrafine Vacancy-Rich Nb_(2)O_(5)Semiconductors Confined in Carbon Nanosheets Boost Dielectric Polarization for High-Attenuation Microwave Absorption
10
作者 Zhe Su Shan Yi +5 位作者 Wanyu Zhang Xiaxi Xu Yayun Zhang Shenghu Zhou Bo Niu Donghui Long 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期478-493,共16页
The integration of nano-semiconductors into electromagnetic wave absorption materials is a highly desirable strategy for intensifying dielectric polarization loss;achieving high-attenuation microwave absorption and re... The integration of nano-semiconductors into electromagnetic wave absorption materials is a highly desirable strategy for intensifying dielectric polarization loss;achieving high-attenuation microwave absorption and realizing in-depth comprehension of dielectric loss mechanisms remain challenges.Herein,ultrafine oxygen vacancy-rich Nb_(2)O_(5)semiconductors are confined in carbon nanosheets(ov-Nb_(2)O_(5)/CNS)to boost dielectric polarization and achieve high attenuation.The polarization relaxation,electromagnetic response,and impedance matching of the ov-Nb_(2)O_(5)/CNS are significantly facilitated by the Nb_(2)O_(5)semiconductors with rich oxygen vacancies,which consequently realizes an extremely high attenuation performance of-80.8 dB(>99.999999%wave absorption)at 2.76 mm.As a dielectric polarization center,abundant Nb_(2)O_(5)–carbon heterointerfaces can intensify interfacial polarization loss to strengthen dielectric polarization,and the presence of oxygen vacancies endows Nb_(2)O_(5)semiconductors with abundant charge separation sites to reinforce electric dipole polarization.Moreover,the three-dimensional reconstruction of the absorber using microcomputer tomography technology provides insight into the intensification of the unique lamellar morphology regarding multiple reflection and scattering dissipation characteristics.Additionally,ov-Nb_(2)O_(5)/CNS demonstrates excellent application potential by curing into a microwave-absorbing,machinable,and heat-dissipating plate.This work provides insight into the dielectric polarization loss mechanisms of nano-semiconductor/carbon composites and inspires the design of high-performance microwave absorption materials. 展开更多
关键词 Electromagnetic wave absorption Nb_(2)O_(5)semiconductor Dielectric polarization loss Oxygen vacancy Nb_(2)O_(5)-carbon hetero-interface
下载PDF
Families of magnetic semiconductors——an overview 被引量:7
11
作者 Tomasz Dietl Alberta Bonanni Hideo Ohno 《Journal of Semiconductors》 EI CAS CSCD 2019年第8期3-7,共5页
The interplay of magnetic and semiconducting properties has been in the focus for more than a half of the century. In this introductory article we briefly review the key properties and functionalities of various magne... The interplay of magnetic and semiconducting properties has been in the focus for more than a half of the century. In this introductory article we briefly review the key properties and functionalities of various magnetic semiconductor families, including europium chalcogenides, chromium spinels, dilute magnetic semiconductors, dilute ferromagnetic semiconductors and insulators, mentioning also sources of non-uniformities in the magnetization distribution, accounting for an apparent high Curie temperature ferromagnetism in many systems. Our survey is carried out from today's perspective of ferromagnetic and antiferromagnetic spintronics as well as of the emerging fields of magnetic topological materials and atomically thin 2D layers. 展开更多
关键词 magnetic and dilute magnetic semiconductors topological materials 2D systems
下载PDF
Advances in new generation diluted magnetic semiconductors with independent spin and charge doping 被引量:3
12
作者 Guoqiang Zhao Zheng Deng Changqing Jin 《Journal of Semiconductors》 EI CAS CSCD 2019年第8期45-56,共12页
As one branch of spintronics, diluted magnetic semiconductors (DMSs) are extensively investigated due to their fundamental significance and potential application in modern information society. The classical materials ... As one branch of spintronics, diluted magnetic semiconductors (DMSs) are extensively investigated due to their fundamental significance and potential application in modern information society. The classical materials (Ga,Mn)As of III-V group based DMSs has been well studied for its high compatibility with the high-mobility semiconductor GaAs. But the Curie temperature in (Ga,Mn)As film is still far below room temperature because the spin & charge doping is bundled to the same element that makes the fabrication very difficult. Alternatively, the discovery of a new generation DMSs with independent spin and charge doping, such as (Ba,K)(Zn,Mn)2As2 (briefly named BZA), attracted considerable attention due to their unique advantages in physical properties and heterojunction fabrication. In this review we focus on this series of new DMSs including (I) materials in terms of three types of new DMSs, i.e. the "111","122" and "1111" system;(II) the physical properties of BZA;(III) single crystals & prototype device based on BZA. The prospective of new type of DMSs with independent spin and charge doping is briefly discussed. 展开更多
关键词 DILUTED magnetic semiconductors INDEPENDENT SPIN and charge doping high CURIE temperature
下载PDF
Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR 被引量:3
13
作者 Yilun Gu Shengli Guo Fanlong Ning 《Journal of Semiconductors》 EI CAS CSCD 2019年第8期57-63,共7页
Diluted magnetic semiconductors (DMSs) that possess both properties of semiconductors and ferromagnetism, have attracted a lot of attentions due to its potential applications for spin-sensitive electronic devices. Rec... Diluted magnetic semiconductors (DMSs) that possess both properties of semiconductors and ferromagnetism, have attracted a lot of attentions due to its potential applications for spin-sensitive electronic devices. Recently, a series of bulk form DMSs isostructural to iron-based superconductors have been reported, which can be readily investigated by microscopic experimental techniques such as nuclear magnetic resonance (NMR) and muon spin rotation (μSR). The measurements have demonstrated that homogeneous ferromagnetism is achieved in these DMSs. In this review article, we summarize experimental evidences from both NMR and μSR measurements. NMR results have shown that carriers facilitate the interactions between distant Mn atoms, while μSR results indicate that these bulk form DMSs and (Ga,Mn)As share a common mechanism for the ferromagnetic exchange interactions. 展开更多
关键词 DILUTED MAGNETIC semiconductors MUON spin rotation nuclear MAGNETIC resonance FERROMAGNETISM
下载PDF
Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors 被引量:5
14
作者 郭胜利 宁凡龙 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期26-33,共8页
Diluted ferromagnetic semiconductors(DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronic(spintronic) devices. The search for DMS material... Diluted ferromagnetic semiconductors(DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronic(spintronic) devices. The search for DMS materials exploded after the observation of ferromagnetic ordering in Ⅲ-Ⅴ(Ga,Mn)As films. Recently, a series of DMS compounds isostructural to iron-based superconductors have been reported. Among them, the highest Curie temperature TCo f 230 K has been achieved in(Ba,K)(Zn,Mn)2As2. However, most DMSs, including(Ga,Mn)As, are p-type, i.e., the carriers that mediate the ferromagnetism are holes. For practical applications, DMSs with n-type carriers are also advantageous. Very recently,a new DMS Ba(Zn,Co)2As2 with n-type carriers has been synthesized. Here we summarize the recent progress on this research stream. We will show that the homogeneous ferromagnetism in these bulk form DMSs has been confirmed by microscopic techniques, i.e., nuclear magnetic resonance(NMR) and muon spin rotation(μSR). 展开更多
关键词 diluted ferromagnetic semiconductors homogenous ferromagnetism muon spin rotation (IxSR) nuclear magnetic resonance (NMR)
下载PDF
Recent Advances in Strain-Induced Piezoelectric and Piezoresistive Effect-Engineered 2D Semiconductors for Adaptive Electronics and Optoelectronics 被引量:4
15
作者 Feng Li Tao Shen +3 位作者 Cong Wang Yupeng Zhang Junjie Qi Han Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第8期236-279,共44页
The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties ... The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications. 展开更多
关键词 2D semiconductors STRAIN Piezoelectric effect Piezoresistive effect Electronic and optoelectronics
下载PDF
Amorphous magnetic semiconductors with Curie temperatures above room temperature 被引量:2
16
作者 Na Chen Kaixuan Fang +4 位作者 Hongxia Zhang Yingqi Zhang Wenjian Liu Kefu Yao Zhengjun Zhang 《Journal of Semiconductors》 EI CAS CSCD 2019年第8期100-107,共8页
Recently, amorphous magnetic semiconductors as a new family of magnetic semiconductors have been developed by oxidizing ferromagnetic amorphous metals/alloys. Intriguingly, tuning the relative atomic ratios of Co and ... Recently, amorphous magnetic semiconductors as a new family of magnetic semiconductors have been developed by oxidizing ferromagnetic amorphous metals/alloys. Intriguingly, tuning the relative atomic ratios of Co and Fe in a Co-Fe-Ta-B-O system leads to the formation of an intrinsic magnetic semiconductor. Starting from high Curie-temperature amorphous ferromagnets, these amorphous magnetic semiconductors show Curie temperatures well above room temperature. Among them, one typical example is a p-type Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor, which has an optical bandgap of ~2.4 eV, roomtemperature saturation magnetization of ~433 emu/cm3, and the Curie temperature above 600 K. The amorphous Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor can be integrated with n-type Si to form p-n heterojunctions with a threshold voltage of ~1.6 V, validating its p-type semiconducting character. Furthermore, the demonstration of electric field control of its room-temperature ferromagnetism reflects the interplay between the electricity and ferromagnetism in this material. It is suggested that the carrier density, ferromagnetism and conduction type of an intrinsic magnetic semiconductor are controllable by means of an electric field effect. These findings may pave a new way to realize magnetic semiconductor-based spintronic devices that work at room temperature. 展开更多
关键词 CoFeTaBO AMORPHOUS magnetic semiconductors electric field control of FERROMAGNETISM metal-semiconductor TRANSITION
下载PDF
Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning 被引量:2
17
作者 朱震 董宝娟 +2 位作者 郭怀红 杨腾 张志东 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期327-335,共9页
Two-dimensional(2D)semiconductors isoelectronic to phosphorene have been drawing much attention recently due to their promising applications for next-generation(opt)electronics.This family of 2D materials contains mor... Two-dimensional(2D)semiconductors isoelectronic to phosphorene have been drawing much attention recently due to their promising applications for next-generation(opt)electronics.This family of 2D materials contains more than 400members,including(a)elemental group-V materials,(b)binary III–VII and IV–VI compounds,(c)ternary III–VI–VII and IV–V–VII compounds,making materials design with targeted functionality unprecedentedly rich and extremely challenging.To shed light on rational functionality design with this family of materials,we systemically explore their fundamental band gaps and alignments using hybrid density functional theory(DFT)in combination with machine learning.First,calculations are performed using both the Perdew–Burke–Ernzerhof exchange–correlation functional within the generalgradient-density approximation(GGA-PBE)and Heyd–Scuseria–Ernzerhof hybrid functional(HSE)as a reference.We find this family of materials share similar crystalline structures,but possess largely distributed band-gap values ranging approximately from 0 eV to 8 eV.Then,we apply machine learning methods,including linear regression(LR),random forest regression(RFR),and support vector machine regression(SVR),to build models for the prediction of electronic properties.Among these models,SVR is found to have the best performance,yielding the root mean square error(RMSE)less than 0.15 eV for the predicted band gaps,valence-band maximums(VBMs),and conduction-band minimums(CBMs)when both PBE results and elemental information are used as features.Thus,we demonstrate that the machine learning models are universally suitable for screening 2D isoelectronic systems with targeted functionality,and especially valuable for the design of alloys and heterogeneous systems. 展开更多
关键词 TWO-DIMENSIONAL semiconductors machine learning
下载PDF
First principles study on the structural, electronic and optical properties of diluted magnetic semiconductors Zn1-xCoxX (X=S, Se, Te) 被引量:2
18
作者 欧阳楚英 熊志华 +3 位作者 欧阳企振 刘国栋 叶志清 雷敏生 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第7期1585-1590,共6页
The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the... The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the Co atoms in the lattice are studied after Co atoms are doped. It is shown that the Co-doped materials have smaller lattice constant (about 0.6%-0.9%). This is mainly due to the shortened Co-X bond length. The (partial) density of states (DOS) is calculated and differences between the pure and doped materials are studied. Results show that for the Co-doped materials, the valence bands are moving upward due to the existence of Co 3d electron states while the conductance bands are moving downward due to the reduced lattice constants. This results in the narrowed band gap of the doped materials. The complex dielectric indices and the absorption coefficients are calculated to examine the influences of the Co atoms on the optical properties. Results show that for the Co-doped materials, the absorption peaks in the high wavelength region are not as sharp and distinct as the undoped materials, and the absorption ranges are extended to even higher wavelength region. 展开更多
关键词 first principles diluted magnetic semiconductors optical properties electronic properties
下载PDF
The predicaments and expectations in development of magnetic semiconductors 被引量:1
19
作者 Qiang Cao Shishen Yan 《Journal of Semiconductors》 EI CAS CSCD 2019年第8期9-19,共11页
Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room tempera... Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room temperature magnetic semiconductors with strong and controllable s, p-d exchange interaction. With this s, p-d exchange interaction, one can utilize the spin degree of freedom to design applicable spintronics devices with very attractive functions that are not available in conventional semiconductors. Here, we first review the progress in understanding of this particular material and the dilemma to prepare a room temperature magnetic semiconductor. Then we discuss recent experimental progresses to pursue strong s, p-d interaction to realize room temperature magnetic semiconductors, which are achieved by introducing a very high concentration of magnetic atoms by means of low-temperature nonequilibrium growth. 展开更多
关键词 MAGNETIC semiconductors s p-d interaction high concentration of MAGNETIC ATOMS low temperature NONEQUILIBRIUM growth SEMICONDUCTOR SPINTRONICS
下载PDF
Some recent advances in ab initio calculations of nonradiative decay rates of point defects in semiconductors 被引量:1
20
作者 Linwang Wang 《Journal of Semiconductors》 EI CAS CSCD 2019年第9期26-31,共6页
In this short review,we discuss a few recent advances in calculating the nonradiative decay rates for point defects in semiconductors.We briefly review the debates and connections of using different formalisms to calc... In this short review,we discuss a few recent advances in calculating the nonradiative decay rates for point defects in semiconductors.We briefly review the debates and connections of using different formalisms to calculate the multi-phonon processes.We connect Dr.Huang's formula with Marcus theory formula in the high temperature limit,and point out that Huang's formula provide an analytical expression for the phonon induced electron coupling constant in the Marcus theory formula.We also discussed the validity of 1D formula in dealing with the electron transition processes,and practical ways to correct the anharmonic effects. 展开更多
关键词 SCF SOME recent advances in ab INITIO calculations of nonradiative DECAY rates of point defects in semiconductors
下载PDF
上一页 1 2 111 下一页 到第
使用帮助 返回顶部