期刊文献+
共找到465篇文章
< 1 2 24 >
每页显示 20 50 100
Spraying Arginine at 5 Days before Harvest Delays Postharvest Broccoli Senescence via Nutrient Accumulation
1
作者 SUN Yupeng CHEN Ying +4 位作者 SHANG Qingwen GUO Yanyin ZHANG Yuxiao WANG Yunqiao XUE Qingyue 《食品科学》 EI CAS 北大核心 2025年第1期131-141,共11页
To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conduct... To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conducted at 0,1,3,and 5 days before harvest.The appearance,respiration rate,mass-loss rate,electrolyte leakage,glucosinolate,ascorbic acid,total phenol,total flavonoid,total sugar and sucrose contents,and sucrose phosphate synthase(SPS),invertase(INV),sucrose synthase synthesis(SSS)and cleavage(SSC)activities of broccoli samples were observed after 0,2,4,6,8,and 10 days of storage.The results showed that spraying arginine at 5 days preharvest(5-ARG)helped to inhibit broccoli respiration during storage,delay electrolyte leakage,and maintain broccoli color.Furthermore,during the growth stage,total sugar accumulation was higher in the 5-ARG group.In addition,during the storage period,sucrose synthesis was accelerated,while sucrose cleavage was inhibited,resulting in more sucrose retention in postharvest broccoli.In conclusion,5-ARG resulted in the accumulation of more nutrients during the growth process and effectively delayed the quality decline during storage,thereby prolonging the shelf life of broccoli.Therefore,this study provides a theoretical basis for improving postharvest storage characteristics of broccoli through preharvest treatments. 展开更多
关键词 ARGININE BROCCOLI preharvest spraying nutrient accumulation storage quality postharvest senescence
下载PDF
Ethylene accelerates maize leaf senescence in response to nitrogen deficiency by regulating chlorophyll metabolism and autophagy 被引量:1
2
作者 Jiapeng Xing Ying Feng +3 位作者 Yushi Zhang Yubin Wang Zhaohu Li Mingcai Zhang 《The Crop Journal》 SCIE CSCD 2024年第5期1391-1403,共13页
Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechani... Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechanisms on the crosstalk between ethylene-and N-regulated leaf senescence remain a mystery in maize.In this study,ethylene biosynthesis gene ZmACS7 overexpressing(OE-ZmACS7)plants were used to study the role of ethylene regulating leaf senescence in response to N deficiency,and they exhibited the premature leaf senescence accompanied by increased ethylene release,decreased chlorophyll content and F_v/F_m ratio,and accelerated chloroplast degradation.Then,we investigated the dynamics changes of transcriptome reprogramming underlying ethylene-accelerated leaf senescence in response to N deficiency.The differentially expressed genes(DEGs)involved in chlorophyll biosynthesis were significantly down-regulated,while DEGs involved in chlorophyll degradation and autophagy processes were significantly up-regulated,especially in OE-ZmACS7 plants in response to N deficiency.A gene regulatory network(GRN)was predicted during ethylene-accelerated leaf senescence in response to N deficiency.Three transcription factors(TFs)ZmHSF4,Zmb HLH106,and ZmEREB147 were identified as the key regulatory genes,which targeted chlorophyll biosynthesis gene ZmLES22,chlorophyll degradation gene ZmNYC1,and autophagy-related gene ZmATG5,respectively.Furthermore,ethylene signaling key genes might be located upstream of these TFs,generating the signaling cascade networks during ethylene-accelerated leaf senescence in response to N deficiency.Collectively,these findings improve our molecular knowledge of ethylene-accelerated maize leaf senescence in response to N deficiency,which is promising to improve NUE by manipulating the progress of leaf senescence in maize. 展开更多
关键词 ETHYLENE Leaf senescence N deficiency Chlorophyll metabolism AUTOPHAGY Gene regulatory network
下载PDF
Melatonin delays leaf senescence in pak choi(Brassica rapa subsp.chinensis)by regulating biosynthesis of the second messenger cGMP 被引量:1
3
作者 Xuesong Liu Ronghui An +3 位作者 Guofeng Li Shufen Luo Huali Hu Pengxia Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期145-155,共11页
Melatonin(MT)is a low molecular weight compound with multiple biological functions in plants.It is known to delay leaf senescence in various species.However,no data are available on the MT signaling pathway in posthar... Melatonin(MT)is a low molecular weight compound with multiple biological functions in plants.It is known to delay leaf senescence in various species.However,no data are available on the MT signaling pathway in postharvest vegetables.This study demonstrates that MT increases cGMP concentration and the expression of the cGMP synthesis gene BcGC1 in pak choi.The c GMP inhibitor LY83583 destroys effect of MT delaying the leaf senescence.LY83583 also prevents MT treatment from reducing the expression of chlorophyll metabolism-related genes(BcNYC1,BcNOL,BcPPH1/2,BcSGR1/2,and BcPAO)and senescence genes(BcSAG12 and BcSAG21).It also inhibits MT from reducing the activity of the key chlorophyll catabolism enzymes Mg-dechelatase,pheophytinase,and pheide a oxygenase.Thus,the ability of MT to maintain high levels of chlorophyll metabolites is also destroyed.The Arabidopsis c GMP synthetic gene mutant atgc1 was used to confirm that delayed leaf senescence caused by MT is mediated,at least in part,by the second messenger c GMP. 展开更多
关键词 Pak choi MELATONIN CGMP Chlorophyll degradation senescence
下载PDF
Silencing of peroxiredoxin 2 suppresses proliferation and Wnt/β-catenin pathway,and induces senescence in hepatocellular carcinoma 被引量:1
4
作者 XUEGANG YANG XIANHONG XIANG +3 位作者 GUOHUI XU SHI ZHOU TIANZHI AN ZHI HUANG 《Oncology Research》 SCIE 2024年第1期213-226,共14页
Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our... Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells. 展开更多
关键词 Peroxiredoxin 2 Hepatocellular carcinoma Wnt/β-catenin pathway senescence PROLIFERATION
下载PDF
Genome-wide identification of the CONSTANS-LIKE(COL)family and mechanism of fruit senescence regulation by PpCOL8 in sand pear(Pyrus pyrifolia)
5
作者 Yue Xu Shurui Song +9 位作者 Huiying Wang Xilong Cao Xinran Zhao Wenli Wang Liyue Huo Yawei Li Misganaw Wassie Bin Lu Liang Chen Haiyan Shi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1222-1237,共16页
Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic aci... Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic acid(SA),a well-known phytohormone,can delay fruit senescence and improve shelf life.However,the mechanism by which SA regulates CONSTANS-LIKE genes(COLs)during fruit senescence and the role of COL genes in mediating fruit senescence in sand pear are poorly understood.In this study,22 COL genes were identified in sand pear,including four COLs(Pp COL8,Pp COL9a,Pp COL9b,and Pp COL14)identified via transcriptome analysis and 18 COLs through genome-wide analysis.These COL genes were divided into three subgroups according to the structural domains of the COL protein.Pp COL8,with two B-box motifs and one CCT domain,belonged to the first subgroup.In contrast,the other three Pp COLs,Pp COL9a,Pp COL9b,and Pp COL14,with similar conserved protein domains and gene structures,were assigned to the third subgroup.The four COLs showed different expression patterns in pear tissues and were preferentially expressed at the early stage of fruit development.Moreover,the expression of Pp COL8 was inhibited by exogenous SA treatment,while SA up-regulated the expression of Pp COL9a and Pp COL9b.Interestingly,Pp COL8 interacts with Pp MADS,a MADS-box protein preferentially expressed in fruit,and SA up-regulated its expression.While the production of ethylene and the content of malondialdehyde(MDA)were increased in Pp COL8-overexpression sand pear fruit,the antioxidant enzyme(POD and SOD)activity and the expression of Pp POD1 and Pp SOD1 in the sand pear fruits were down-regulated,which showed that Pp COL8 promoted sand pear fruit senescence.In contrast,the corresponding changes were the opposite in Pp MADS-overexpression sand pear fruits,suggesting that Pp MADS delayed sand pear fruit senescence.The co-transformation of Pp COL8 and Pp MADS also delayed sand pear fruit senescence.The results of this study revealed that Pp COL8 can play a key role in pear fruit senescence by interacting with Pp MADS through the SA signaling pathway. 展开更多
关键词 Pyrus pyrifolia CONSTANS-LIKE gene salicylic acid fruit senescence MADS
下载PDF
Rice melatonin deficiency causes premature leaf senescence via DNA methylation regulation
6
作者 Yue Lu Ahmed Gharib +15 位作者 Rujia Chen Hanyao Wang Tianyun Tao Zhihao Zuo Qing Bu Yanze Su Yaoqing Li Yanmo Luo Hamdi F.El-Mowafi Zhichao Wang Qianfeng Huang Shuting Wang Yang Xu Pengcheng Li Chenwu Xu Zefeng Yang 《The Crop Journal》 SCIE CSCD 2024年第3期721-731,共11页
In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogr... In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogramming,especially of genes involved in chlorophyll and carbon metabolism,redox regulation,and transcriptional regulation,during dark-induced leaf senescence.Hypomethylation of mCG and mCHG in the melatonin-deficient rice mutants was associated with the expression change of both protein-coding genes and transposable element-related genes.Changes in gene expression and DNA methylation in the melatonin-deficient mutants were compensated by exogenous application of melatonin.A decreased S-adenosyl-L-methionine level may have contributed to the DNA methylation variations in rice mutants of melatonin deficiency under dark conditions. 展开更多
关键词 MELATONIN Premature leaf senescence RICE DNA methylation Epigenetic regulation
下载PDF
Synergistic effects of planting density and nitrogen fertilization on chlorophyll degradation and leaf senescence after silking in maize
7
作者 Tianqiong Lan Lunjing Du +9 位作者 Xinglong Wang Xiaoxu Zhan Qinlin Liu Gui Wei Chengcheng Lyu Fan Liu Jiaxu Gao Dongju Feng Fanlei Kong Jichao Yuan 《The Crop Journal》 SCIE CSCD 2024年第2期605-613,共9页
Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the act... Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield. 展开更多
关键词 DENSITY Nitrogen fertilization Leaf senescence Chlorophyll-degrading enzyme Logistic model
下载PDF
Rice ONAC016 promotes leaf senescence through abscisic acid signaling pathway involving OsNAP
8
作者 Eunji Gi Sung-Hwan Cho +2 位作者 Suk-Hwan Kim Kiyoon Kang Nam-Chon Paek 《The Crop Journal》 SCIE CSCD 2024年第3期709-720,共12页
Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescen... Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescence.The expression of ONAC016 increased rapidly in rice leaves during the progression of dark-induced and natural senescence.The onac016-1 knockout mutant showed a delayed leaf yellowing phenotype,whereas the overexpression of ONAC016 accelerated leaf senescence.Notably,ONAC016 expression was upregulated by abscisic acid(ABA),and thus detached leaves of the onac016-1 mutant remained green much longer under ABA treatment.Quantitative RT-PCR analysis showed that ONAC016 upregulates the genes associated with chlorophyll degradation,senescence,and ABA signaling.Yeast one-hybrid and dual-luciferase assays revealed that ONAC016 binds directly to the promoter regions of OsNAP,a key gene involved in chlorophyll degradation and ABA-induced senescence.Taken together,these results suggest that ONAC016 plays an important role in promoting leaf senescence through the ABA signaling pathway involving OsNAP. 展开更多
关键词 RICE ONAC016 OsNAP Leaf senescence Abscisic acid signaling
下载PDF
Improved observation of colonized roots reveals the regulation of arbuscule development and senescence by drought stress in the arbuscular mycorrhizae of citrus
9
作者 Xilong Yin Wei Zhang +3 位作者 Zengwei Feng Guangda Feng Honghui Zhu Qing Yao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期425-436,共12页
Citrus is the typical mycorrhizal fruit tree species establishing symbiosis with arbuscular mycorrhizal (AM) fungi. However, arbuscule development and senescence in colonized citrus roots, especially in response to dr... Citrus is the typical mycorrhizal fruit tree species establishing symbiosis with arbuscular mycorrhizal (AM) fungi. However, arbuscule development and senescence in colonized citrus roots, especially in response to drought stress, remain unclear, which is mainly due to the difficulty in clearing and staining lignified roots with the conventional method. Here, we improved the observation of colonized roots of citrus plants with the sectioning method, which enabled the clear observation of AM fungal structures. Furthermore, we investigated the effects of one week of drought stress on arbuscule development and senescence with the sectioning method. Microscopy observations indicated that drought stress significantly decreased mycorrhizal colonization (F%and M%) although it did not affect plant growth performance. Fluorescence probes (WGA 488 and/or Nile red) revealed that drought stress inhibited arbuscule development by increasing the percentage of arbuscules at the early stage and decreasing the percentages of arbuscules at the midterm and mature stages. Meanwhile, drought stress accelerated arbuscule senescence, which was characterized by the increased accumulation of neutral lipids. Overall, the sectioning method developed in this study enables the in-depth investigation of arbuscule status, and drought stress can inhibit arbuscule development but accelerate arbuscule senescence in the colonized roots of citrus plants. This study paves the way to elaborately dissecting the arbuscule dynamics in the roots of fruit tree species in response to diverse abiotic stresses. 展开更多
关键词 Arbuscular mycorrhizae CITRUS Drought stress Arbuscule development Arbuscule senescence Fruit tree species
下载PDF
Age-related secretion of grancalcin by macrophages induces skeletal stem/progenitor cell senescence during fracture healing
10
作者 Nan-Yu Zou Ran Liu +18 位作者 Mei Huang Yu-Rui Jiao Jie Wei Yangzi Jiang Wen-Zhen He Min Huang Yi-Li Xu Ling Liu Yu-Chen Sun Mi Yang Qi Guo Yan Huang Tian Su Ye Xiao Wei-Shan Wang Chao Zeng Guang-Hua Lei Xiang-Hang Luo Chang-Jun Li 《Bone Research》 SCIE CAS CSCD 2024年第1期122-136,共15页
Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluse... Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluses secrete prosenescent factors,including grancalcin(GCA),during aging,which triggers SSPC senescence and impairs fracture healing.Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair.Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence.Mechanistically,GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction,resulting in cellular senescence.Depletion of Plxnb2 in SSPCs impaired fracture healing.Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice.Thus,our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence,and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals. 展开更多
关键词 healing UNION senescence
下载PDF
Defect in an immune regulator gene BrSRFR1 leads to premature leaf senescence in Chinese cabbage
11
作者 Yue Xin Gengxing Song +1 位作者 Chong Tan Hui Feng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第6期1414-1423,共10页
Leaf senescence is the final stage of leaf development, where the nutrients and energy of senescent leaves are redistributed to developing tissues or organs for plant growth, reproduction, and defense. Outer leaves ar... Leaf senescence is the final stage of leaf development, where the nutrients and energy of senescent leaves are redistributed to developing tissues or organs for plant growth, reproduction, and defense. Outer leaves are photosynthetic organs that usually senesce at the late heading stage in Chinese cabbage, and premature leaf senescence often reduces leafy head yield and quality. In this study, 11 premature leaf senescence mutants were screened from an ethyl methanesulfonate-mutagenized population of the double haploid line ‘FT' in Chinese cabbage. At the early heading stage, the mutants exhibited edge yellowing within its outer leaves, and at the mature stage, its leafy head weight decreased significantly. Genetic analysis revealed that the mutated trait of all 11 mutants corresponds to single gene recessive inheritance. Semi-diallel cross tests showed that 5 of the 11 were allelic mutants. MutMap and Kompetitive Allele Specific PCR genotyping revealed that BraA01g001400.3C was the candidate gene, which is orthologous of Arabidopsis SUPPRESSOR OF rps4-RLD 1, encoding an immune regulator, so we named it as BrSRFR1. All the BrSRFR1 in the five allelic mutants exhibited single nucleotide polymorphisms at different positions on their exons and led to premature translation termination, which confirmed that defect in BrSRFR1 led to premature leaf senescence. These results verify the role of Br SRFR1 on leaf senescence and provide a new insight into the mechanisms of leaf senescence in Chinese cabbage, which reveals a novel function of SRFR1 in plant development. 展开更多
关键词 Chinese cabbage Premature leaf senescence SRFR1 Gene cloning
下载PDF
Association between Gene Polymorphisms and SNP-SNP Interactions of the Matrix Metalloproteinase 2 Signaling Pathway and the Risk of Vascular Senescence
12
作者 LIAO Zhen Yu YANG Shuo +3 位作者 HU Song LIU Jia MAO Yong Jun SUN Shu Qin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第2期146-156,共11页
Objective This study aimed to explore the association of single nucleotide polymorphisms(SNP)in the matrix metalloproteinase 2(MMP-2)signaling pathway and the risk of vascular senescence(VS).Methods In this cross-sect... Objective This study aimed to explore the association of single nucleotide polymorphisms(SNP)in the matrix metalloproteinase 2(MMP-2)signaling pathway and the risk of vascular senescence(VS).Methods In this cross-sectional study,between May and November 2022,peripheral venous blood of151 VS patients(case group)and 233 volunteers(control group)were collected.Fourteen SNPs were identified in five genes encoding the components of the MMP-2 signaling pathway,assessed through carotid-femoral pulse wave velocity(cf PWV),and analyzed using multivariate logistic regression.The multigene influence on the risk of VS was assessed using multifactor dimensionality reduction(MDR)and generalized multifactor dimensionality regression(GMDR)modeling.Results Within the multivariate logistic regression models,four SNPs were screened to have significant associations with VS:chemokine(C-C motif)ligand 2(CCL2)rs4586,MMP2 rs14070,MMP2rs7201,and MMP2 rs1053605.Carriers of the T/C genotype of MMP2 rs14070 had a 2.17-fold increased risk of developing VS compared with those of the C/C genotype,and those of the T/T genotype had a19.375-fold increased risk.CCL2 rs4586 and MMP-2 rs14070 exhibited the most significant interactions.Conclusion CCL2 rs4586,MMP-2 rs14070,MMP-2 rs7201,and MMP-2 rs1053605 polymorphisms were significantly associated with the risk of VS. 展开更多
关键词 Vascular senescence Pulse wave velocity(PWV) Single nucleotide polymorphism(SNP) Matrix metalloproteinase 2(MMP-2) Extracellular matrix(ECM) Structural degradation Multifactor dimensionality reduction(MDR)
下载PDF
SENEX-mediated CDK4/6 inhibition promotes senescence and confers apoptosis resistance in B-cell non-Hodgkin lymphoma
13
作者 JIYU WANG LIUYING YI +3 位作者 KEKE HUANG YANGYANG WANG HUIPING WANG ZHIMIN ZHAI 《BIOCELL》 SCIE 2024年第3期453-462,共10页
Background:The primary cause of treatment failure in patients with refractory or relapsed B-cell non-Hodgkin lymphoma(r/r B-NHL)is resistance to current therapies,and therapy-induced senescence(TIS)stands out as a cru... Background:The primary cause of treatment failure in patients with refractory or relapsed B-cell non-Hodgkin lymphoma(r/r B-NHL)is resistance to current therapies,and therapy-induced senescence(TIS)stands out as a crucial mechanism contributing to tumor drug resistance.Here,we analyzed SENEX/Rho GTPase Activating Protein 18(ARHGAP18)expression and prognostic significance in doxorubicin-induced B-NHL-TIS model and r/r B-NHL patients,investigating its target in B-NHL cell senescence and the effect of combining specific inhibitors on apoptosis resistance in B-NHL-TIS cells.Methods:Raji cells were transfected with the human SENEX shRNA recombinant lentiviral vector(Sh-SENEX)and the empty vector negative(NC)to construct a stable transfection cell line with knockdown of SENEX.Effect of SENEX-silencing on B-NHL-TIS formation,cell function and cell cycle-related pathways was analyzed.Using doxorubicin(DOX)-inducible senescent B-NHL cells combined with the specific cyclin dependent kinase 4/6(CDK4/6)inhibitor Palbociclib to observe that blocking CDK4/6 effects on TIS formation.SENEX expression of 21 B-NHL patients and 8 healthy controls were analyzed by qRT-PCR,and the correlation between its expression and clinical indicators were evaluated.Results:The downregulation of SENEX expression promotes G1-S phase transition and apoptosis while inhibiting cell proliferation,collectively suppressing the formation of TIS in B-NHL.Blockade of CDK4/6 promotes the DOX-induced G1 phase arrest to enhance TIS formation in B-NHL cells which can reverse the regulatory effect of silencing SENEX on B-NHL cell cycle regulation and senescence.The expression levels of SENEX were notably elevated in B-NHL patients compared to healthy controls,and Elevated expression levels of SENEX were associated with poor prognosis of B-NHL patients.Conclusions:SENEX enhances apoptosis resistance in B-NHL by inhibiting CDK4/6,thereby preventing G1-S phase transition and promoting TIS formation. 展开更多
关键词 SENEX B-cell non-Hodgkin lymphoma CDK4/6 G1-S phase transition Therapy-induced senescence Apoptosis resistance
下载PDF
Cellular Senescence and SENEX Gene on the Peripheral CD4+CD25+ Treg Cells Enhancement in Elderly
14
作者 Mengxin Wen Jing Chai Beng Wen 《Journal of Biosciences and Medicines》 2024年第2期70-79,共10页
Cellular senescence is a signal transduction process which maintained genomic stability and stopped mammalian cell growth. Furthermore, cellular senescence induces a protective response to a variety of DNA damage. How... Cellular senescence is a signal transduction process which maintained genomic stability and stopped mammalian cell growth. Furthermore, cellular senescence induces a protective response to a variety of DNA damage. However, this process is also associated with apoptosis, upregulated secretion of inflammatory cytokine, and promoted surrounding tissue damage. When cellular senescence accumulates to a certain extent, it triggers geriatric diseases, such as chronic inflammation, immune senescence-associated tumors and incontrollable infections. Cellular senescence gene SENEX, which was cloned in 2004, has been demonstrated to play a unique gatekeeper function in human endothelial cells when stress-induced pre-mature senescence and apoptosis occurr. The phenomenon that CD4+CD25+ Treg cells accumulated in the aged population has been well studied in recent years. Now Treg accumulation related to immune-pathology has attracted more interest. CD4+CD25+ Treg did not decline and age, but accumulated and suppressed immunoreaction. The enhanced Treg number and function may be associated with stress-induced premature senescence-mediated unique cellular senescence protection mechanisms, and SENEX may play a critical role in this process. In this article, we summarize the cellular senescence and SENEX gene in the accumulation and functional activity of CD4+CD25+ Treg in the elderly. 展开更多
关键词 Cellular senescence GENE SENEX CD4 CD25 TREG ELDER
下载PDF
Drought events influence nutrient canopy exchanges and green leaf partitioning during senescence in a deciduous forest
15
作者 J.Touche C.Calvaruso +1 位作者 P.De Donato M.-P.Turpault 《Forest Ecosystems》 SCIE CSCD 2024年第1期110-119,共10页
The increase in the frequency and intensity of drought events expected in the coming decades in Western Europe may disturb forest biogeochemical cycles and create nutrient deficiencies in trees.One possible origin of ... The increase in the frequency and intensity of drought events expected in the coming decades in Western Europe may disturb forest biogeochemical cycles and create nutrient deficiencies in trees.One possible origin of nutrient deficiency is the disturbance of the partitioning of the green leaf pool during the leaf senescence period between resorption,foliar leaching and senesced leaves.However,the effects of drought events on this partitioning and the consequences for the maintenance of tree nutrition are poorly documented.An experiment in a beech forest in Meuse(France)was conducted to assess the effect of drought events on nutrient canopy exchanges and on the partitioning of the green leaf pool during the leaf senescence period.The aim was to identify potential nutritional consequences of droughts for trees.Monitoring nutrient dynamics,including resorption,chemistry of green and senesced leaves,foliar absorption and leaching in mature beech stands from 2012 to 2019 allowed us to compare the nutrient exchanges for three nondry and three dry years(i.e.,with an intense drought event during the growing season).During dry years,we observed a decrease by almost a third of the potassium(K)partitioning to resorption(i.e.resorption efficiency),thus reducing the K reserve in trees for the next growing season.This result suggests that with the increased drought frequency and intensity expected for the coming decades,there will be a risk of potassium deficiency in trees,as already observed in a rainfall exclusion experiment on the same study site.Reduced foliar leaching and higher parititioning to the senesced leaves for K and phosphorus(P)were also observed.In addition,a slight increase in nitrogen(N)resorption efficiency occurred during dry years which is more likely to improve tree nutrition.The calcium(Ca)negative resorption decreased,with no apparent consequence in our study site.Our results show that nutrient exchanges in the canopy and the partitioning of the green leaf pool can be modified by drought events,and may have consequences on tree nutrition. 展开更多
关键词 Natural drought Beech forest CANOPY RESORPTION Foliar leaching Senesced leaves NUTRITION
下载PDF
Senescence-Related Endopeptidase Isozymes in Spirodela polyrrhiza Half-fronds Detected by Gel Electrophoresis 被引量:3
16
作者 刘清岱 王金菊 +2 位作者 李红涛 赵昱 张治州 《Agricultural Science & Technology》 CAS 2010年第1期31-32,106,共3页
[Objective]To study endopeptidases in Spirodela polyrrhiza half-fronds during senescence and their characters. [Method]Changes in endopeptidase isoenzymes of the Spirodela polyrrhiza half-fronds during senescence were... [Objective]To study endopeptidases in Spirodela polyrrhiza half-fronds during senescence and their characters. [Method]Changes in endopeptidase isoenzymes of the Spirodela polyrrhiza half-fronds during senescence were detected by gelatin-SDS-PAGE electrophoresis,and their types were analyzed with protease inhibitors. [Result]Six endopeptidases were detected in the Spirodela polyrrhiza half-fronds during senescence. Among them,HEP1,HEP2,HEP4 and HEP6 (high molecular-weight endoprotease) were senescence-related endopeptidases. [Conclusion]The metalloendopeptidase plays significant roles at the early stage of senescence,and the cysteine endopeptidase are the most abundant at the late stage of senescence. 展开更多
关键词 Spirodela polyrrhiza Half-fronds senescence ENDOPEPTIDASE
下载PDF
Expression of a Wheat S-like RNase (WRN1) cDNA During Natural-and Dark-induced Senescence 被引量:2
17
作者 常胜合 英加 +5 位作者 张吉军 苏俊英 曾雅娟 童依平 李滨 李振声 《Acta Botanica Sinica》 CSCD 2003年第9期1071-1075,共5页
An S-like RNase cDNA had been isolated from common wheat (Triticum aestivum L). The transcription of WRN1 mRNA was down-regulated by natural- and dark-induced senescence. But it was not senile-tissue-specific. As the ... An S-like RNase cDNA had been isolated from common wheat (Triticum aestivum L). The transcription of WRN1 mRNA was down-regulated by natural- and dark-induced senescence. But it was not senile-tissue-specific. As the two key histidine residues were replaced, WRN1 may not be active as RNase. Southern blotting analysis showed that WRN1 exists as one of a small gene family in common wheat genome. 展开更多
关键词 wheat S-like RNase (WRN1) leaf senescence common wheat
下载PDF
Photoperiod Control of Apical Bud and Leaf Senescence in Pumpkin ( Cucurbita pepo ) Strain 185 被引量:2
18
作者 王大勇 胡爽 +2 位作者 李晴 崔克明 朱玉贤 《Acta Botanica Sinica》 CSCD 2002年第1期55-62,共8页
Short_day (SD) induced the plant senescence in pumpkin ( Cucurbita pepo Linn.) strain 185. Structural assay, gene expression and a series of biochemical analyses were performed to analyze the senescence mechanism... Short_day (SD) induced the plant senescence in pumpkin ( Cucurbita pepo Linn.) strain 185. Structural assay, gene expression and a series of biochemical analyses were performed to analyze the senescence mechanism in pumpkin strain 185 exposed to SD. Two aspects of important changes initiated in SD exposure contributed to the senescence process. SD functionally led to the initiation of the apical transformation from vegetative to reproductive growth, and then programmed cell death (PCD) in the apical meristem, causing the loss of vigorous growth activity. Moreover, SD treatment resulted in the formation of a great number of dying cells in mesophyll tissue later in the development compared with the phenotype of plants under long_day (LD) conditions. During the senescence process, high expression of nuclease is an important molecular event. These results indicate that the initiation of senescence process in pumpkin stain 185 plants is closely related to the death of cells in apical meristem and mesophyll. 展开更多
关键词 PHOTOPERIOD senescence programmed cell death (PCD)
下载PDF
Characterization of Endopeptidases in Wheat Leaves During Dark-induced Senescence 被引量:4
19
作者 芮琪 徐朗莱 《Acta Botanica Sinica》 CSCD 2003年第9期1049-1054,共6页
The characterization of senescence-associated endopeptidase (EP) isoenzymes in wheat (Triticum aestivum L. cv. Yangmai 158) leaves during dark-induced senescence was performed. It was found that there was much higher ... The characterization of senescence-associated endopeptidase (EP) isoenzymes in wheat (Triticum aestivum L. cv. Yangmai 158) leaves during dark-induced senescence was performed. It was found that there was much higher endoproteolytic activity in dark-induced wheat leaves than in control. Six endopeptidase isoenzymes (EP1-EP6) were identified by natural gradient-polyacrylamide gel electrophoresis (PAGE) co-polymerized gelatin in the gel, five of which (EP1, EP2, EP4, EP5 and EP6) were only detected in senescing leaves. Treatment with 6-benzyl aminopurine (6-BA) delayed the expression of these EP isoenzymes and abscisic acid (ABA) accelerated it. The activity of EP3 could be detected at a wider range of pH and temperature levels while EP4, EP5 and EP 6 could be only detected at pH 4-5 and 30 -45 degreesC, EP1 and EP2 at pH 3-5 and 30-45 degreesC. All of the EP isoenzymes showed high thermal stability, especially EP3, EP5 and EP6 which still had activitiy even by incubation at 55 degreesC for 1 h. By using different class-specific inhibitors, EP1 and EP2 were characterized as metal-dependent cysteine-proteases, EP4 as a serine-protease. 展开更多
关键词 ENDOPEPTIDASE leaf senescence WHEAT
下载PDF
Studies on Endogenous Hormones and Nutritional Physiology Related to the Premature Senescence of Super-hybrid Rice Liangyoupeijiu and Its Parents at Late Growth Stage 被引量:3
20
作者 郭士伟 夏士健 +1 位作者 赵学强 朱虹霞 《Agricultural Science & Technology》 CAS 2014年第11期1914-1918,共5页
The amount of root bleeding sap, contents of chlorophyl , nutrients and hormones in flag leaves of a super-hybrid rice cultivar Liangyoupeijiu (LYPJ) and its parents 9311 and Pei’ai 64S after heading were measured ... The amount of root bleeding sap, contents of chlorophyl , nutrients and hormones in flag leaves of a super-hybrid rice cultivar Liangyoupeijiu (LYPJ) and its parents 9311 and Pei’ai 64S after heading were measured in this study. The re-sults revealed that compared with 9311, the chlorophyl content of LYPJ reduced more quickly after heading, and then kept at a lower level, which was an obvious characteristic of premature senescence. The other physiological indices of LYPJ af-ter heading except abscisic acid (ABA) content in leaf and root also maintained at a lower level than 9311, while al the physiological indices of the sterile line Pei'ai 64S were lower than LYPJ. So it was speculated that the early-aging characteristic of LYPJ may be inherited from Pei’ai 64S. Al the leaf and root early-aging traits reduced for LYPJ and its parent lines after heading, their leaf and root aged grad-ual y, which indicated that the above-ground (leaf) and under-ground (root) parts cor-related to each other closely, but there was not absolute correlations between them judged from the data. 展开更多
关键词 Super-hybrid rice Parent lines Premature senescence Endogenous hormones Nutritional Physiology
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部