A metallic nanostructured array that scatters radiation toward a thin metallic layer generates surface plasmon resonances for normally incident light. The location of the minimum of the spectral reflectivity serves to...A metallic nanostructured array that scatters radiation toward a thin metallic layer generates surface plasmon resonances for normally incident light. The location of the minimum of the spectral reflectivity serves to detect changes in the index of refraction of the medium under analysis. The normal incidence operation eases its integration with optical fibers. The geometry of the arrangement and the material selection are changed to optimize some performance parameters as sensitivity, figure of merit, field enhancement, and spectral width. This optimization takes into account the feasibility of the fabrication. The evaluated results of sensitivity(1020 nm/RIU)and figure of merit(614 RIU^(-1)) are competitive with those previously reported.展开更多
Agricultural geospatial information is critical for agricultural policy formulation and decision making, land use monitoring, agricultural sustainability, crop acreage and yield estimation, disaster assessment, bioene...Agricultural geospatial information is critical for agricultural policy formulation and decision making, land use monitoring, agricultural sustainability, crop acreage and yield estimation, disaster assessment, bioenergy crop inventory, food security policy, environmental assessment, carbon accounting, and other research topics that are of vital importance to agricul- ture and economy. Remote sensing technology enables us to collect, process, and analyze remotely sensed data and to retrieve, synthesize, visualize valuable geospatial information for agriculture uses. Specifically, remote sensing technology empowers capability for large scale field level or regional assessment and monitoring of crop land cover,展开更多
Through applied researches, the regularity of thermal infrared radiation of the coal seams has been found, a model of thermal radiation of the coal seams established, and the internal relations of the information extr...Through applied researches, the regularity of thermal infrared radiation of the coal seams has been found, a model of thermal radiation of the coal seams established, and the internal relations of the information extracted from remote sensing images with coal seams and coal measures revealed. Through a series of complete tests of remote sensing techniques such as multi-level (space, aerial and ground) synchronous remote-sensing and multi-directional, multiband and multitemporal remote sensing, the optimal procedure for applications of remote sensing techniques in coal geology has been determined. The theories and methods established in the applied researches have yielded apparent economic results and social benefits in respect to coal field prediction, coal reconnaissance, coal geological surveys and detection of geological hazards in coal mines.展开更多
1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form ...1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form a large reservoir. Its impacts on environment have attracted wide attention. Entrusted by National Scientific-Technical Commission, the Chinese Academy of Sciences (CAS) was in charge of a research project on this issuse from 1984 to 1989. Tho use of remote sensing played an important role in the project considering the study area is mountainous and not convenientlv located, which makes it difficult to conduct the research onlv using conventional means.展开更多
Disaster warning,disaster estimation and relief depend more and more on the application of space remote sensing technologies,such as those used for optic-camera,hyperspectrum,infrared,SAR,seismo-electromagnet and grav...Disaster warning,disaster estimation and relief depend more and more on the application of space remote sensing technologies,such as those used for optic-camera,hyperspectrum,infrared,SAR,seismo-electromagnet and gravitation measurement.On May 12,2008,a magnitude of 8.展开更多
The environmental conditions in China are still very serious. In the years to come, the mission for environmental treatment and protection, supervision,
This paper introduces some advanced subjects on lidar remote sensing of the atmosphere, emphasizing recent studies and developments in lidar application for measuring ozone, cloud, aerosol, atmospheric temperature, mo...This paper introduces some advanced subjects on lidar remote sensing of the atmosphere, emphasizing recent studies and developments in lidar application for measuring ozone, cloud, aerosol, atmospheric temperature, moisture, pressure and wind.展开更多
Ⅰ. Introduction Over the past two decades, microwave remote sensing has evolved into a focal point in the remote sensing area. This is due to the fact that in microwave band, we can acquire physical parameters about ...Ⅰ. Introduction Over the past two decades, microwave remote sensing has evolved into a focal point in the remote sensing area. This is due to the fact that in microwave band, we can acquire physical parameters about ocean, terrain and atmosphere on all weather condition. Research and application work about the aerial passive micro wave remote sensors has been done at Changchun Institute of Geography since 1973, under the unitary planning of Academia Sinica. Microwave radiometers of six freqency bands have been developed. Numerous remote sensing experiments were carried out, and large amount of scientific data were accumulated. Recently, theoretical models have展开更多
1 Introduction Potassium is listed as one of the shortage of mineral resources in china.Geophysical and remote sensing technology plays an important role in prospecting for potash ressources.
There are abundant water power resources in the Yalong River which are suitable for the large hydroelectric engineering. But a reliability study should be made for the valley which liable to frequent earthquakes. The ...There are abundant water power resources in the Yalong River which are suitable for the large hydroelectric engineering. But a reliability study should be made for the valley which liable to frequent earthquakes. The color infrared aerophotos, multi-spectral photography and thermal infrared scanning had been specially done besides MSS image, processing. Researches on remote sensing applications to engineering geology, hydrogeology, deformation of neo-tectonics, Iandslide, mud-rock flow, ecological environment and geographical information system had been carried out by more than 20 research units.展开更多
Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Ba...Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Barzegari et al., 2017). An Mw 7.2 earthquake occurred in Yutian of Xinjiang on the western end of the Altyn Tagh fault on March 21 st, 2008. It is difficult to access this depopulated zone because of the high altitude and only 1–2 months of snowmelt. This study utilized high-resolution展开更多
1. PREFACE Lingdingyang is a trumpet estuary. It accepts the runoff of the Dongjiang River, the Beijiang River, the Zhengjiang River and the Liusihe River. It also accepts a part of the runoff of the Xijiang River. It...1. PREFACE Lingdingyang is a trumpet estuary. It accepts the runoff of the Dongjiang River, the Beijiang River, the Zhengjiang River and the Liusihe River. It also accepts a part of the runoff of the Xijiang River. Its mean year runoff is 1.742×10" M^3. In resent ten years, industry and agriculture are developing rapidly in Guangzhou City, Dongguan City, Zhongshan City, Shunde County, Panyu County. Lingdingyang’s pollution is increesing. Water quality of lingdingyang is steadily deteriorated. In order to investigate the situation of water environment of Lingdingyang, we study its static environmental capacity of nitrogen and phosphorus. LANDSAT imageries are used in the study. The concentrations of nitrogen and phosphorous is detected by convention method.展开更多
Carbon dots(CDs)have been attracted much attention and widely studied due to their excellent fluorescence(FL)properties,better biocompatibility and outstanding photo/chemical stability.However,the disadvantage of lowe...Carbon dots(CDs)have been attracted much attention and widely studied due to their excellent fluorescence(FL)properties,better biocompatibility and outstanding photo/chemical stability.However,the disadvantage of lower quantum yield(QY)still limits its wide application.Herein,we reported a novel and convenient strategy to prepare photo-induced Ag/CDs(p-Ag/CDs)by irradiating the mixed Ag+and hydrophobic CDs(h-CDs)acetone solution with ultraviolet(UV)light.The obtained p-Ag/CDs exhibit a greatly enhanced FL emission together with a blue shift(460 nm)than h-CDs(520 nm).The QY of p-Ag/CDs is measured to be 51.1%,which is 10.4 times higher than that of h-CDs(4.9%),indicating that photo-induced Ag modulation can effectively improve the optical properties of CDs.The mechanisms for the FL enhancement and blue shift of h-CDs are studied in detail.The results prove that the greatly enhanced FL emission is from the generated Ag nanoparticles(AgNPs)by UV light irradiation based on metal-enhanced fluorescence(MEF),and the increased oxygen-contained groups in this process lead to the blue shift in CDs fluorescence.Interestingly,the p-Ag/CDs exhibit higher sensitivity and selectivity for sulfide ions(S2-)detection than that of h-CDs,which have a lower response to S2-.This work not only offers a novel strategy to improve the FL properties of materials but also endows them with new functions and broadens their application fields.展开更多
Covalent organic frameworks(COFs)are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks.Due to their large surface area,high intrinsic pore space,goo...Covalent organic frameworks(COFs)are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks.Due to their large surface area,high intrinsic pore space,good crystallization properties,high stability,and designability of the resultant units,COFs are widely studied and used in the fields of gas adsorption,drug transport,energy storage,photoelectric catalysis,electrochemistry,and sensors.In recent years,the rapid development of the Internet of Things and people’s yearning for a better life have put forward higher and more requirements for sensors,which are the core components of the Internet of Things.Therefore,this paper reviews the recent progress of COFs in synthesis methods and sensing applications,especially in the last five years.This paper first introduces structure,properties,and synthesis methods of COFs and discusses advantages and disadvantages of different synthesis methods.Then,the research progress of COFs in different sensing fields,such as metal ion sensors,gas sensors,biomedical sensors,humidity sensors,and pH sensors,is introduced systematically.Conclusions and prospects are also presented in order to provide a reference for researchers concerned with COFs and sensors.展开更多
Optical feedback characteristics in He-Ne dual frequency lasers are studied systematically in different feedback power ratios with a variable attenuator. Feedback power ratios vary from 0.010 up to 0.998. Five distinc...Optical feedback characteristics in He-Ne dual frequency lasers are studied systematically in different feedback power ratios with a variable attenuator. Feedback power ratios vary from 0.010 up to 0.998. Five distinct regimes of self-interference effects are found and defined as regimes Ⅰ, Ⅱ,Ⅲ,Ⅳand Ⅴ. Accordingly, five optical feedback levels have been put forward in He-Ne dual frequency lasers. Strong mode competitions are observed in regimes Ⅲ and Ⅳ. In regime Ⅴ, multiple feedback effects are investigated. The basic theoretical analysis is also presented. Our results can advance the research of self-mixing interferometer and displacement sensor of He-Ne orthogonally polarized dual frequency lasers.展开更多
The progresses of marine meteorology studies achieved in China during the four year period from 1999 to 2002 are summarized in six directions: air-sea flux, marine meteorology in high latitudes, marine disasters, conn...The progresses of marine meteorology studies achieved in China during the four year period from 1999 to 2002 are summarized in six directions: air-sea flux, marine meteorology in high latitudes, marine disasters, connection between ocean and weather/climate in China, remote sensing applications and new methodologies in marine meteorology. Compared to the previous ones, these studies adopted much more first-hand datasets, and more scientific issues were involved. As an exciting remark, there were so many contributions done by the young scientists. A brief statement about the research strategy of marine meteorology in China for the coming years is also given.展开更多
It is urgent and necessary to integrate a marine geographical information system (MGIS) with marine remote sensing detection modules. On the basis of the current technology and features of applications, an open thre...It is urgent and necessary to integrate a marine geographical information system (MGIS) with marine remote sensing detection modules. On the basis of the current technology and features of applications, an open three-layer integration framework is designed. At the data layer, a two-level three-base integration mechanism based on the plug-in technology is applied; At the function layer, an integration mode based on API, DLL, EXE and COM is discussed; and at the application layer, a sharing mechanism based on the clients/service is adopted. As an example, the remote sensing integrated application information system of China's coastal zone and offshore (MaXplorer1. 0) with muhiecology remote sensing fusion and assimilation module, surge detection module as well as eight other thematic application modules is integrated, and the key technology of integration is discussed at different layers and in different modules. The result shows that it is possible to realize the conformity of technology and resources and to provide the incorporate technology platform for marine information operational functioning after applying the integration framework.展开更多
We demonstrated long-period grating(LPG) inscription on polymer functionalized optical microfibers and its applications in optical sensing. Optical microfibers were functionalized with ultraviolet-sensitive polymethyl...We demonstrated long-period grating(LPG) inscription on polymer functionalized optical microfibers and its applications in optical sensing. Optical microfibers were functionalized with ultraviolet-sensitive polymethyl methacrylate jackets and, thus, LPGs could be inscribed on optical microfibers via point-by-point ultraviolet laser exposure. For a 2 mm long microfiber LPG(MLPG) inscribed on optical microfibers with a diameter of 5.4 μm, a resonant dip of 15 d B at 1377 nm was observed. This MLPG showed a high sensitivity of strain and axial force, i.e.,-1.93 pm∕με and-1.15 pm∕μN, respectively. Although the intrinsic temperature sensitivity of the LPGs is relatively low, i.e.,-12.75 pm∕°C, it can be increased to be-385.11 pm∕°C by appropriate sealing. Benefiting from the small footprint and high sensitivity, MLPGs could have potential applications in optical sensing of strain,axial force, and temperature.展开更多
With the maturation of satellite technology,Hyperspectral Remote Sensing(HRS)platforms have developed from the initial ground-based and airborne platforms into spaceborne platforms,which greatly promotes the civil app...With the maturation of satellite technology,Hyperspectral Remote Sensing(HRS)platforms have developed from the initial ground-based and airborne platforms into spaceborne platforms,which greatly promotes the civil application of HRS imagery in the fields of agriculture,forestry,and environmental monitoring.China is playing an important role in this evolution,especially in recent years,with the successful launch and operation of a series of civil hyper-spectral spacecraft and satellites,including the Shenzhou-3 spacecraft,the Gaofen-5 satellite,the SPARK satellite,the Zhuhai-1 satellite network for environmental and resources monitoring,the FengYun series of satellites for meteorological observation,and the Chang’E series of spacecraft for planetary exploration.The Chinese spaceborne HRS platforms have various new characteristics,such as the wide swath width,high spatial resolution,wide spectral range,hyperspectral satellite networks,and microsatellites.This paper focuses on the recent progress in Chinese spaceborne HRS,from the aspects of the typical satellite systems,the data processing,and the applications.In addition,the future development trends of HRS in China are also discussed and analyzed.展开更多
With the rapid development and wide deployment of wireless technology, Wi-Fi signals have no longer been confined to the Internet as a communication medium. Wi-Fi signals will be modulated again by human actions when ...With the rapid development and wide deployment of wireless technology, Wi-Fi signals have no longer been confined to the Internet as a communication medium. Wi-Fi signals will be modulated again by human actions when propagating indoors, carrying rich human body state information. Therefore, a novel wireless sensing technology is gradually emerging that can realize gesture recognition, human daily activity detection, identification,indoor localization and human body tracking, vital signs detection, imaging, and emotional recognition by extracting effective feature information about human actions from Wi-Fi signals. Researchers mainly use channel state information or frequency modulated carrier wave in their current implementation schemes of wireless sensing technology, called "Walls have eyes", and these schemes cover radio-frequency technology, signal processing technology, and machine learning. These available wireless sensing systems can be used in many applications such as smart home, medical health care, search-and-rescue, security, and with the high precision and passively device-free through-wall detection function. This paper elaborates the research actuality and summarizes each system structure and the basic principles of various wireless sensing applications in detail. Meanwhile, two popular implementation schemes are analyzed. In addition, the future diversely application prospects of wireless sensing systems are presented.展开更多
基金Funding.Ministerio de Economía y Competitividad(MINECO)(TEC2013-40442)Ministry of Higher Education(MOHE)(missions section)
文摘A metallic nanostructured array that scatters radiation toward a thin metallic layer generates surface plasmon resonances for normally incident light. The location of the minimum of the spectral reflectivity serves to detect changes in the index of refraction of the medium under analysis. The normal incidence operation eases its integration with optical fibers. The geometry of the arrangement and the material selection are changed to optimize some performance parameters as sensitivity, figure of merit, field enhancement, and spectral width. This optimization takes into account the feasibility of the fabrication. The evaluated results of sensitivity(1020 nm/RIU)and figure of merit(614 RIU^(-1)) are competitive with those previously reported.
文摘Agricultural geospatial information is critical for agricultural policy formulation and decision making, land use monitoring, agricultural sustainability, crop acreage and yield estimation, disaster assessment, bioenergy crop inventory, food security policy, environmental assessment, carbon accounting, and other research topics that are of vital importance to agricul- ture and economy. Remote sensing technology enables us to collect, process, and analyze remotely sensed data and to retrieve, synthesize, visualize valuable geospatial information for agriculture uses. Specifically, remote sensing technology empowers capability for large scale field level or regional assessment and monitoring of crop land cover,
文摘Through applied researches, the regularity of thermal infrared radiation of the coal seams has been found, a model of thermal radiation of the coal seams established, and the internal relations of the information extracted from remote sensing images with coal seams and coal measures revealed. Through a series of complete tests of remote sensing techniques such as multi-level (space, aerial and ground) synchronous remote-sensing and multi-directional, multiband and multitemporal remote sensing, the optimal procedure for applications of remote sensing techniques in coal geology has been determined. The theories and methods established in the applied researches have yielded apparent economic results and social benefits in respect to coal field prediction, coal reconnaissance, coal geological surveys and detection of geological hazards in coal mines.
文摘1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form a large reservoir. Its impacts on environment have attracted wide attention. Entrusted by National Scientific-Technical Commission, the Chinese Academy of Sciences (CAS) was in charge of a research project on this issuse from 1984 to 1989. Tho use of remote sensing played an important role in the project considering the study area is mountainous and not convenientlv located, which makes it difficult to conduct the research onlv using conventional means.
文摘Disaster warning,disaster estimation and relief depend more and more on the application of space remote sensing technologies,such as those used for optic-camera,hyperspectrum,infrared,SAR,seismo-electromagnet and gravitation measurement.On May 12,2008,a magnitude of 8.
文摘The environmental conditions in China are still very serious. In the years to come, the mission for environmental treatment and protection, supervision,
文摘This paper introduces some advanced subjects on lidar remote sensing of the atmosphere, emphasizing recent studies and developments in lidar application for measuring ozone, cloud, aerosol, atmospheric temperature, moisture, pressure and wind.
文摘Ⅰ. Introduction Over the past two decades, microwave remote sensing has evolved into a focal point in the remote sensing area. This is due to the fact that in microwave band, we can acquire physical parameters about ocean, terrain and atmosphere on all weather condition. Research and application work about the aerial passive micro wave remote sensors has been done at Changchun Institute of Geography since 1973, under the unitary planning of Academia Sinica. Microwave radiometers of six freqency bands have been developed. Numerous remote sensing experiments were carried out, and large amount of scientific data were accumulated. Recently, theoretical models have
基金financially supported by projects of 2006AA06A208, 2013AA0639, 1212011120188 and 12120113099000
文摘1 Introduction Potassium is listed as one of the shortage of mineral resources in china.Geophysical and remote sensing technology plays an important role in prospecting for potash ressources.
文摘There are abundant water power resources in the Yalong River which are suitable for the large hydroelectric engineering. But a reliability study should be made for the valley which liable to frequent earthquakes. The color infrared aerophotos, multi-spectral photography and thermal infrared scanning had been specially done besides MSS image, processing. Researches on remote sensing applications to engineering geology, hydrogeology, deformation of neo-tectonics, Iandslide, mud-rock flow, ecological environment and geographical information system had been carried out by more than 20 research units.
基金supported by the National Natural Science Foundation of China (grants No. 41461164002 and 41631073)
文摘Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Barzegari et al., 2017). An Mw 7.2 earthquake occurred in Yutian of Xinjiang on the western end of the Altyn Tagh fault on March 21 st, 2008. It is difficult to access this depopulated zone because of the high altitude and only 1–2 months of snowmelt. This study utilized high-resolution
文摘1. PREFACE Lingdingyang is a trumpet estuary. It accepts the runoff of the Dongjiang River, the Beijiang River, the Zhengjiang River and the Liusihe River. It also accepts a part of the runoff of the Xijiang River. Its mean year runoff is 1.742×10" M^3. In resent ten years, industry and agriculture are developing rapidly in Guangzhou City, Dongguan City, Zhongshan City, Shunde County, Panyu County. Lingdingyang’s pollution is increesing. Water quality of lingdingyang is steadily deteriorated. In order to investigate the situation of water environment of Lingdingyang, we study its static environmental capacity of nitrogen and phosphorus. LANDSAT imageries are used in the study. The concentrations of nitrogen and phosphorous is detected by convention method.
基金the National Natural Science Foundation of China(Nos.U1833202 and 21876117)the Open Research Fund of the School of Chemistry and Chemical Engineering,Henan Normal University(No.2021YB05).
文摘Carbon dots(CDs)have been attracted much attention and widely studied due to their excellent fluorescence(FL)properties,better biocompatibility and outstanding photo/chemical stability.However,the disadvantage of lower quantum yield(QY)still limits its wide application.Herein,we reported a novel and convenient strategy to prepare photo-induced Ag/CDs(p-Ag/CDs)by irradiating the mixed Ag+and hydrophobic CDs(h-CDs)acetone solution with ultraviolet(UV)light.The obtained p-Ag/CDs exhibit a greatly enhanced FL emission together with a blue shift(460 nm)than h-CDs(520 nm).The QY of p-Ag/CDs is measured to be 51.1%,which is 10.4 times higher than that of h-CDs(4.9%),indicating that photo-induced Ag modulation can effectively improve the optical properties of CDs.The mechanisms for the FL enhancement and blue shift of h-CDs are studied in detail.The results prove that the greatly enhanced FL emission is from the generated Ag nanoparticles(AgNPs)by UV light irradiation based on metal-enhanced fluorescence(MEF),and the increased oxygen-contained groups in this process lead to the blue shift in CDs fluorescence.Interestingly,the p-Ag/CDs exhibit higher sensitivity and selectivity for sulfide ions(S2-)detection than that of h-CDs,which have a lower response to S2-.This work not only offers a novel strategy to improve the FL properties of materials but also endows them with new functions and broadens their application fields.
基金funded by the National Natural Science Foundation of China(No.21964016)Xinjiang National Science Fund for Distinguished Young Scholars(No.2022D01E37)+1 种基金Key programs of Xinjiang Natural Science Foundation(No.2022B02051)Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region(No.2020D14038).
文摘Covalent organic frameworks(COFs)are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks.Due to their large surface area,high intrinsic pore space,good crystallization properties,high stability,and designability of the resultant units,COFs are widely studied and used in the fields of gas adsorption,drug transport,energy storage,photoelectric catalysis,electrochemistry,and sensors.In recent years,the rapid development of the Internet of Things and people’s yearning for a better life have put forward higher and more requirements for sensors,which are the core components of the Internet of Things.Therefore,this paper reviews the recent progress of COFs in synthesis methods and sensing applications,especially in the last five years.This paper first introduces structure,properties,and synthesis methods of COFs and discusses advantages and disadvantages of different synthesis methods.Then,the research progress of COFs in different sensing fields,such as metal ion sensors,gas sensors,biomedical sensors,humidity sensors,and pH sensors,is introduced systematically.Conclusions and prospects are also presented in order to provide a reference for researchers concerned with COFs and sensors.
基金Supported by the National Natural Science Foundation of China under Grant No 60438010.
文摘Optical feedback characteristics in He-Ne dual frequency lasers are studied systematically in different feedback power ratios with a variable attenuator. Feedback power ratios vary from 0.010 up to 0.998. Five distinct regimes of self-interference effects are found and defined as regimes Ⅰ, Ⅱ,Ⅲ,Ⅳand Ⅴ. Accordingly, five optical feedback levels have been put forward in He-Ne dual frequency lasers. Strong mode competitions are observed in regimes Ⅲ and Ⅳ. In regime Ⅴ, multiple feedback effects are investigated. The basic theoretical analysis is also presented. Our results can advance the research of self-mixing interferometer and displacement sensor of He-Ne orthogonally polarized dual frequency lasers.
基金supported by the National Natural Science Foundation of China(Grant No.40136010)the Ministry of Science and Technology of China(No.2001DIA50041)the Chinese Academy of Sciences(Grant No.KZCX-2-205).
文摘The progresses of marine meteorology studies achieved in China during the four year period from 1999 to 2002 are summarized in six directions: air-sea flux, marine meteorology in high latitudes, marine disasters, connection between ocean and weather/climate in China, remote sensing applications and new methodologies in marine meteorology. Compared to the previous ones, these studies adopted much more first-hand datasets, and more scientific issues were involved. As an exciting remark, there were so many contributions done by the young scientists. A brief statement about the research strategy of marine meteorology in China for the coming years is also given.
基金The Project of"863"Program of China under contract No. 2004AA639820the National Natural Science Foundation of China undercontract No. 40571129
文摘It is urgent and necessary to integrate a marine geographical information system (MGIS) with marine remote sensing detection modules. On the basis of the current technology and features of applications, an open three-layer integration framework is designed. At the data layer, a two-level three-base integration mechanism based on the plug-in technology is applied; At the function layer, an integration mode based on API, DLL, EXE and COM is discussed; and at the application layer, a sharing mechanism based on the clients/service is adopted. As an example, the remote sensing integrated application information system of China's coastal zone and offshore (MaXplorer1. 0) with muhiecology remote sensing fusion and assimilation module, surge detection module as well as eight other thematic application modules is integrated, and the key technology of integration is discussed at different layers and in different modules. The result shows that it is possible to realize the conformity of technology and resources and to provide the incorporate technology platform for marine information operational functioning after applying the integration framework.
基金supported by National Natural Science Foundation of China(Grant No.61505096)
文摘We demonstrated long-period grating(LPG) inscription on polymer functionalized optical microfibers and its applications in optical sensing. Optical microfibers were functionalized with ultraviolet-sensitive polymethyl methacrylate jackets and, thus, LPGs could be inscribed on optical microfibers via point-by-point ultraviolet laser exposure. For a 2 mm long microfiber LPG(MLPG) inscribed on optical microfibers with a diameter of 5.4 μm, a resonant dip of 15 d B at 1377 nm was observed. This MLPG showed a high sensitivity of strain and axial force, i.e.,-1.93 pm∕με and-1.15 pm∕μN, respectively. Although the intrinsic temperature sensitivity of the LPGs is relatively low, i.e.,-12.75 pm∕°C, it can be increased to be-385.11 pm∕°C by appropriate sealing. Benefiting from the small footprint and high sensitivity, MLPGs could have potential applications in optical sensing of strain,axial force, and temperature.
基金This work was supported by National Natural Science Foundation of China under Grant Nos.42071350,41820104006,41771385 and 41622107supported by Postdoctoral Research Foundation of China.
文摘With the maturation of satellite technology,Hyperspectral Remote Sensing(HRS)platforms have developed from the initial ground-based and airborne platforms into spaceborne platforms,which greatly promotes the civil application of HRS imagery in the fields of agriculture,forestry,and environmental monitoring.China is playing an important role in this evolution,especially in recent years,with the successful launch and operation of a series of civil hyper-spectral spacecraft and satellites,including the Shenzhou-3 spacecraft,the Gaofen-5 satellite,the SPARK satellite,the Zhuhai-1 satellite network for environmental and resources monitoring,the FengYun series of satellites for meteorological observation,and the Chang’E series of spacecraft for planetary exploration.The Chinese spaceborne HRS platforms have various new characteristics,such as the wide swath width,high spatial resolution,wide spectral range,hyperspectral satellite networks,and microsatellites.This paper focuses on the recent progress in Chinese spaceborne HRS,from the aspects of the typical satellite systems,the data processing,and the applications.In addition,the future development trends of HRS in China are also discussed and analyzed.
基金supported in part by the National Natural Science Foundation of China under Key Program of NSFC (No. 61332019)NSFC (Nos. 61572304 and 61272056)Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (No. SKLSFO2014-06)
文摘With the rapid development and wide deployment of wireless technology, Wi-Fi signals have no longer been confined to the Internet as a communication medium. Wi-Fi signals will be modulated again by human actions when propagating indoors, carrying rich human body state information. Therefore, a novel wireless sensing technology is gradually emerging that can realize gesture recognition, human daily activity detection, identification,indoor localization and human body tracking, vital signs detection, imaging, and emotional recognition by extracting effective feature information about human actions from Wi-Fi signals. Researchers mainly use channel state information or frequency modulated carrier wave in their current implementation schemes of wireless sensing technology, called "Walls have eyes", and these schemes cover radio-frequency technology, signal processing technology, and machine learning. These available wireless sensing systems can be used in many applications such as smart home, medical health care, search-and-rescue, security, and with the high precision and passively device-free through-wall detection function. This paper elaborates the research actuality and summarizes each system structure and the basic principles of various wireless sensing applications in detail. Meanwhile, two popular implementation schemes are analyzed. In addition, the future diversely application prospects of wireless sensing systems are presented.