The potential impact of SF6 as a potent greenhouse gas on the global climate is highly attractive.This paper studies the effect of H2O concentration,SF6 inlet concentration and pre-heating temperature on SF6 abatement...The potential impact of SF6 as a potent greenhouse gas on the global climate is highly attractive.This paper studies the effect of H2O concentration,SF6 inlet concentration and pre-heating temperature on SF6 abatement in a packed bed plasma reactor in terms of the removal efficiency and products selectivity.The results showed that the best performance in SF6 abatement was obtained at 1%H2O and 100°C with 98.7%destruction and remove efficiency(DRE)at 2%SF6.Higher energy yields was obtained under higher SF6 inlet concentration.Moreover,the existence of water vapor weakened the micro-discharge and provided H and OH radicals for this system,which showed a close relationship to removal efficiency and products selectivity.Among four sulfur-containing products,SO2 F2 was more stable than SOF2,SOF4 and SO2.Meanwhile,SOF4 and SO2 were very susceptible to the above parameters.This article provides a better understanding of SF6 abatement in a view of both scientific and engineering.展开更多
To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer...To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer-derived ceramics SiBCN(PDCs-SiBCN)were prepared by repeated polymer infiltration and pyrolysis(PIP)of layered C_(sf)/MA-SiBCN composites at 1100℃,and the oxidation behavior and damage mechanism of the as-prepared C_(sf)/SiBCN at 1300–1600℃ were compared and discussed with those of C_(sf)/MA-SiBCN.The C_(sf)/MA-SiBCN composites resist oxidation attack up to 1400℃ but fail at 1500℃ due to the collapse of the porous framework,while the PIP-densified C_(sf)/SiBCN composites are resistant to static air up to 1600℃.During oxidation,oxygen diffuses through preexisting pores and the pores left by oxidation of carbon fibers and pyrolytic carbon(PyC)to the interior of the matrix.Owing to the oxidative coupling effect of the MA-SiBCN and PDCs-SiBCN matrices,a relatively continuous and dense oxide layer is formed on the sample surface,and the interfacial region between the oxide layer and the matrix of the as-prepared composite contains an amorphous glassy structure mainly consisting of Si and O and an incompletely oxidized but partially crystallized matrix,which is primarily responsible for improving the oxidation resistance.展开更多
Al2O3-SiO2(sf)/AZ91D composite was fabricated by squeezing infiltration using preform made of crystallized aluminum silicate short fibers as reinforcement and aluminum phosphate as binder. The interfacial reaction pro...Al2O3-SiO2(sf)/AZ91D composite was fabricated by squeezing infiltration using preform made of crystallized aluminum silicate short fibers as reinforcement and aluminum phosphate as binder. The interfacial reaction products were investigated by optical microscopy, X-ray diffractometry, scanning electron microscopy, and the thermodynamics was discussed. It is shown that alumina silicate fibers are ideal candidates for the reinforcement of the Mg alloy matrix composites, and the perfect strong interfaces were formed by the chemical reaction between Mg in the magnesium alloy matrix and aluminum phosphate binder through generation of MgO particles. In addition, brittle Mg2Si phase was precipitated at the interface through the reaction between amorphous SiO2 and Mg in the magnesium alloy matrix, which affects the mechanical property of the composite.展开更多
基金funded by National Natural Science Foundation of China(No.51777144)State Grid Science and Technology Project(SGHB0000KXJS1800554)。
文摘The potential impact of SF6 as a potent greenhouse gas on the global climate is highly attractive.This paper studies the effect of H2O concentration,SF6 inlet concentration and pre-heating temperature on SF6 abatement in a packed bed plasma reactor in terms of the removal efficiency and products selectivity.The results showed that the best performance in SF6 abatement was obtained at 1%H2O and 100°C with 98.7%destruction and remove efficiency(DRE)at 2%SF6.Higher energy yields was obtained under higher SF6 inlet concentration.Moreover,the existence of water vapor weakened the micro-discharge and provided H and OH radicals for this system,which showed a close relationship to removal efficiency and products selectivity.Among four sulfur-containing products,SO2 F2 was more stable than SOF2,SOF4 and SO2.Meanwhile,SOF4 and SO2 were very susceptible to the above parameters.This article provides a better understanding of SF6 abatement in a view of both scientific and engineering.
基金the National Natural Science Foundation of China(Nos.52372059,52172068,52232004,and 52002092)the Heilongjiang Natural Science Fund for Young Scholars(No.YQ2021E017)+3 种基金the Fundamental Research Funds for the Central Universities(No.2022FRFK060012)the Heilongjiang Touyan Team Program,and the Advanced Talents Scientific Research Foundation of Shenzhen:Yu Zhou.the Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology and Advanced Space Propulsion Laboratory of BICE(No.LabASP-2023-11)the Huiyan Action(No.1A423653)the Key Technologies R&D Program of CNBM(No.2023SJYL05).Ralf Riedel also gratefully acknowledges the financial support provided by the Research Training Group 2561“MatCom-ComMat:Materials Compounds from Composite Materials for Applications in Extreme Conditions”funded by the Deutsche Forschungsgemeinschaft(DFG),Bonn,Germany.
文摘To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer-derived ceramics SiBCN(PDCs-SiBCN)were prepared by repeated polymer infiltration and pyrolysis(PIP)of layered C_(sf)/MA-SiBCN composites at 1100℃,and the oxidation behavior and damage mechanism of the as-prepared C_(sf)/SiBCN at 1300–1600℃ were compared and discussed with those of C_(sf)/MA-SiBCN.The C_(sf)/MA-SiBCN composites resist oxidation attack up to 1400℃ but fail at 1500℃ due to the collapse of the porous framework,while the PIP-densified C_(sf)/SiBCN composites are resistant to static air up to 1600℃.During oxidation,oxygen diffuses through preexisting pores and the pores left by oxidation of carbon fibers and pyrolytic carbon(PyC)to the interior of the matrix.Owing to the oxidative coupling effect of the MA-SiBCN and PDCs-SiBCN matrices,a relatively continuous and dense oxide layer is formed on the sample surface,and the interfacial region between the oxide layer and the matrix of the as-prepared composite contains an amorphous glassy structure mainly consisting of Si and O and an incompletely oxidized but partially crystallized matrix,which is primarily responsible for improving the oxidation resistance.
基金Project(305-E5040440) support by the Natural Science Foundation of South China University of Technology
文摘Al2O3-SiO2(sf)/AZ91D composite was fabricated by squeezing infiltration using preform made of crystallized aluminum silicate short fibers as reinforcement and aluminum phosphate as binder. The interfacial reaction products were investigated by optical microscopy, X-ray diffractometry, scanning electron microscopy, and the thermodynamics was discussed. It is shown that alumina silicate fibers are ideal candidates for the reinforcement of the Mg alloy matrix composites, and the perfect strong interfaces were formed by the chemical reaction between Mg in the magnesium alloy matrix and aluminum phosphate binder through generation of MgO particles. In addition, brittle Mg2Si phase was precipitated at the interface through the reaction between amorphous SiO2 and Mg in the magnesium alloy matrix, which affects the mechanical property of the composite.