This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Util...This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Utilizing a sphere-sphere electrode configuration,we meticulously measured the relationship between breakdown voltage and electrode gap distances ranging from 1 cm to 4.5 cm.Subsequent simulations,conducted using COMSOL Multiphysics,mirrored the experimental setup to validate the model’s accuracy through a comparison of the breakdown voltage-electrode gap distance curves.The simulation results not only aligned closely with the experimental data but also allowed the extraction of detailed electric field strength,electric potential contours,and electric current flow curves at the breakdown voltage for gap distances extending from 1 to 4.5 cm.Extending the analysis,the study explored the electric field and potential distribution at a constant voltage of 72.5 kV for gap distances between 1 to 10 cm,identifying the maximum electric field strength.A comprehensive comparison of five different electrode configurations(sphere-sphere,sphere-rod,sphere-plane,rod-plane,rod-rod)at 72.5 kV and a gap distance of 1.84 cm underscored the significant influence of electrode geometry on the breakdown process.Moreover,the research contrasts the breakdown voltage in SF6 with that in air,emphasizing SF6’s superior insulating properties.This investigation not only elucidates the intricate dynamics of electrical breakdown in SF6 circuit breakers but also contributes valuable insights into the optimal electrode configurations and the potential for alternative insulating gases,steering future advancements in high-voltage circuit breaker technology.展开更多
According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged ...According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged particle's ionization and attachment into account, this model can be used in collaboration with the Coulomb collision model, which gives the relationship of the heavy particle temperature and electron temperature to calculate the electron density and temperature under different pressure and electric field conditions, so as to deliver the breakdown electric field strength under different pressure conditions. Meanwhile an experiment loop of the circuit breaker has been built to measure the breakdown voltage. It is shown that calculated results are in conformity with experiment results on the whole while results based on the stream criterion are larger than experiment results. This indicates that the mathematical model proposed here is more accurate for calculating the dielectric recovery characteristic, it is derived from the stream model with some improvement and refinement and has great significance for increasing the simulation accuracy of circuit breaker's interruption characteristic.展开更多
In this paper, a coupling model of the AC filter branch circuit with the arc plasma in the circuit breaker was built to investigate the arcing process considering the harmonic current. The comparisons among the curren...In this paper, a coupling model of the AC filter branch circuit with the arc plasma in the circuit breaker was built to investigate the arcing process considering the harmonic current. The comparisons among the current at power frequency(50 Hz), power frequency combining the 11 th harmonic and power frequency combining the 24 th harmonic show that the high-order harmonic current would lead to higher decreasing rate of current before current-zero period. In addition, the influence of arc on the amplitude of high-order harmonic current is not negligible. Thus, the coupling of arc with AC filter branch circuit is quite necessary in the numerical modeling of the circuit breaker in the AC filter branch at the high voltage direct current converter station.展开更多
Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum ...Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.展开更多
A new magnetic hydro-dynamics model for nozzle arc emphasizing the interaction of arc with PTFE (polytetrafluorethylene) vapour is established based on the conservation equations. The interruption of auto-expansion ...A new magnetic hydro-dynamics model for nozzle arc emphasizing the interaction of arc with PTFE (polytetrafluorethylene) vapour is established based on the conservation equations. The interruption of auto-expansion circuit breaker is simulated numerically by finite element method and the influence of PTFE vapour on the arc is analysed with this model. The results reveal that the flow field inside the arc chamber is determined by the arc current, the arcing time, the nozzle arc and the clogging of its thermal boundary. The establishment of quenching pressure relies on both SF6 gas and PTFE vapour that absorbed arc energy in the nozzle. The PTFE vapour leads to an increase in the pressure of nozzle arc obviously, and a decrease in the temperature of arc. But it enhances the temperature of arc at zero current and slows down the decreasing rate of arc temperature as the current decreases.展开更多
A 3D Magnetohydrodynamics (MHD) arc model in conjunction with an arc move- ment model is applied to simulate the arc rotation as well as to solve its effect on the pressure in an auto-expansion circuit breaker. The ...A 3D Magnetohydrodynamics (MHD) arc model in conjunction with an arc move- ment model is applied to simulate the arc rotation as well as to solve its effect on the pressure in an auto-expansion circuit breaker. The rotation of the arc driven by an external electromagnetic force is simulated in the case with 200 kA of the short circuit current and 16 ms of arc duration. The arc rotating process and the speed of arc rotation have been obtained in the simulation. A comparison of the pressure in the expansion volume with and without an external magnetic field has been carried out based on the calculation results of two cases. The results of the simulation reveal that the arc rotation, which causes more energy exchange between the arc and its sur- rounding gas, can evidently bring about the pressurization in the expansion volume, which would contribute to more effective arc quenching at current zero and further reducing operation power.展开更多
A new magnetic hydro-dynamics (MHD) model of arc in H.V. auto-expansion SF6 circuit breaker that takes into consideration nozzle ablation due to both radiation and thermal conduction is presented in this paper. The ...A new magnetic hydro-dynamics (MHD) model of arc in H.V. auto-expansion SF6 circuit breaker that takes into consideration nozzle ablation due to both radiation and thermal conduction is presented in this paper. The effect of PTFE (polytetrafluorethylene) vapor is considered in the mass, momentum and energy conservation equations of the constructed model. Then, the gas flow fields with and without conduction considered are simulated. By comparing the aforementioned two results, it is indicated that the arc's maximal temperature with conduction considered is 90 percent of that without considering conduction.展开更多
短路分断是断路器的核心功能,提高断路器的短路分断能力是市场的持续需求。针对有效提升塑壳断路器(Moulded Case Circuit Breaker,MCCB)短路分断能力的方法开展了研究。利用栅片电压测量分析法可以检测灭弧栅片在短路分断时切割电弧的...短路分断是断路器的核心功能,提高断路器的短路分断能力是市场的持续需求。针对有效提升塑壳断路器(Moulded Case Circuit Breaker,MCCB)短路分断能力的方法开展了研究。利用栅片电压测量分析法可以检测灭弧栅片在短路分断时切割电弧的情况,评估各灭弧栅片切割电弧的性能以及电弧在灭弧室内的动态特性,为电弧优化提供参考数据。利用有限元仿真的方法进行电磁力计算,有利于快速验证优化设计方案而免去实际的试验验证,节约产品的研发成本,缩短产品的研发周期。蒸汽喷射控制(Vapour Jet Control,VJC)产气材料的运用也能够进一步提高产品的短路分断能力。综合运用以上设计方法,能够在不会大幅增加研发成本的基础上,快速提升MCCB的短路分断能力,工程应用价值较好。展开更多
为将真空断路器应用于更高电压等级,多断口真空断路器的研究成为行业内的热点问题。在分析总结此前研究成果的基础上,设计了一种由3个光控真空断路器模块(FCVIM)串联组成的126 k V真空断路器。断路器按照U形方式串联光控真空断路器模块...为将真空断路器应用于更高电压等级,多断口真空断路器的研究成为行业内的热点问题。在分析总结此前研究成果的基础上,设计了一种由3个光控真空断路器模块(FCVIM)串联组成的126 k V真空断路器。断路器按照U形方式串联光控真空断路器模块,光控真空断路器模块主要由外绝缘部件、真空灭弧室、均压电容、永磁操动机构及其控制器和操动电源等部分组成,在低电位通过光纤控制技术对工作于高电位的永磁操动机构进行控制。对三断口真空断路器和单断口真空断路器模块分别施加雷电冲击电压,结果显示三断口真空断路器相对单断口真空断路器的击穿电压增益倍数为1.59;在并联不同均压电容和人为制造三断口不同步分断情况下研究三断口真空断路器暂态电压分布特性,发现低分散性操动机构和均压电容的应用可以有效提高其开断能力。三断口真空断路器在额定电压下成功开断40 k A短路电流,在不同试验方式下完成重合闸操作,并已顺利通过挂网试运行。展开更多
基金Ningbo Science and Technology Plan Project(Grant No.2023Z043)。
文摘This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Utilizing a sphere-sphere electrode configuration,we meticulously measured the relationship between breakdown voltage and electrode gap distances ranging from 1 cm to 4.5 cm.Subsequent simulations,conducted using COMSOL Multiphysics,mirrored the experimental setup to validate the model’s accuracy through a comparison of the breakdown voltage-electrode gap distance curves.The simulation results not only aligned closely with the experimental data but also allowed the extraction of detailed electric field strength,electric potential contours,and electric current flow curves at the breakdown voltage for gap distances extending from 1 to 4.5 cm.Extending the analysis,the study explored the electric field and potential distribution at a constant voltage of 72.5 kV for gap distances between 1 to 10 cm,identifying the maximum electric field strength.A comprehensive comparison of five different electrode configurations(sphere-sphere,sphere-rod,sphere-plane,rod-plane,rod-rod)at 72.5 kV and a gap distance of 1.84 cm underscored the significant influence of electrode geometry on the breakdown process.Moreover,the research contrasts the breakdown voltage in SF6 with that in air,emphasizing SF6’s superior insulating properties.This investigation not only elucidates the intricate dynamics of electrical breakdown in SF6 circuit breakers but also contributes valuable insights into the optimal electrode configurations and the potential for alternative insulating gases,steering future advancements in high-voltage circuit breaker technology.
基金supported by Science and Technology Project of State Grid Corporation of China(No.GY17201200063)National Natural Science Foundation of China(No.51277123)Basic Research Project of Liaoning Key Laboratory of Education Department(LZ2015055)
文摘According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged particle's ionization and attachment into account, this model can be used in collaboration with the Coulomb collision model, which gives the relationship of the heavy particle temperature and electron temperature to calculate the electron density and temperature under different pressure and electric field conditions, so as to deliver the breakdown electric field strength under different pressure conditions. Meanwhile an experiment loop of the circuit breaker has been built to measure the breakdown voltage. It is shown that calculated results are in conformity with experiment results on the whole while results based on the stream criterion are larger than experiment results. This indicates that the mathematical model proposed here is more accurate for calculating the dielectric recovery characteristic, it is derived from the stream model with some improvement and refinement and has great significance for increasing the simulation accuracy of circuit breaker's interruption characteristic.
基金supported by the Major Science and Technology Project of China Southern Power Grid Co.,Ltd(ZBKJXM20170065):Research on Harmonic Resonance Mechanism,Suppression Measures and Impact on Main Equipment of AC/DC Hybrid Power Grid。
文摘In this paper, a coupling model of the AC filter branch circuit with the arc plasma in the circuit breaker was built to investigate the arcing process considering the harmonic current. The comparisons among the current at power frequency(50 Hz), power frequency combining the 11 th harmonic and power frequency combining the 24 th harmonic show that the high-order harmonic current would lead to higher decreasing rate of current before current-zero period. In addition, the influence of arc on the amplitude of high-order harmonic current is not negligible. Thus, the coupling of arc with AC filter branch circuit is quite necessary in the numerical modeling of the circuit breaker in the AC filter branch at the high voltage direct current converter station.
基金supported in part by National Natural Science Foundation of China(No.50977004)Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period.Research of China(2009BAA19B03,2009BAA19B05)+1 种基金Fok Ying Tung Education Foundation(No.131057)New Century Excellent Talents in University of China(No.NCET-10-0282)
文摘Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.
文摘A new magnetic hydro-dynamics model for nozzle arc emphasizing the interaction of arc with PTFE (polytetrafluorethylene) vapour is established based on the conservation equations. The interruption of auto-expansion circuit breaker is simulated numerically by finite element method and the influence of PTFE vapour on the arc is analysed with this model. The results reveal that the flow field inside the arc chamber is determined by the arc current, the arcing time, the nozzle arc and the clogging of its thermal boundary. The establishment of quenching pressure relies on both SF6 gas and PTFE vapour that absorbed arc energy in the nozzle. The PTFE vapour leads to an increase in the pressure of nozzle arc obviously, and a decrease in the temperature of arc. But it enhances the temperature of arc at zero current and slows down the decreasing rate of arc temperature as the current decreases.
基金supported by National Natural Science Foundation of China (Nos.51177005 and 51477004)
文摘A 3D Magnetohydrodynamics (MHD) arc model in conjunction with an arc move- ment model is applied to simulate the arc rotation as well as to solve its effect on the pressure in an auto-expansion circuit breaker. The rotation of the arc driven by an external electromagnetic force is simulated in the case with 200 kA of the short circuit current and 16 ms of arc duration. The arc rotating process and the speed of arc rotation have been obtained in the simulation. A comparison of the pressure in the expansion volume with and without an external magnetic field has been carried out based on the calculation results of two cases. The results of the simulation reveal that the arc rotation, which causes more energy exchange between the arc and its sur- rounding gas, can evidently bring about the pressurization in the expansion volume, which would contribute to more effective arc quenching at current zero and further reducing operation power.
基金National Natural Science Foundation of China (59977018)
文摘A new magnetic hydro-dynamics (MHD) model of arc in H.V. auto-expansion SF6 circuit breaker that takes into consideration nozzle ablation due to both radiation and thermal conduction is presented in this paper. The effect of PTFE (polytetrafluorethylene) vapor is considered in the mass, momentum and energy conservation equations of the constructed model. Then, the gas flow fields with and without conduction considered are simulated. By comparing the aforementioned two results, it is indicated that the arc's maximal temperature with conduction considered is 90 percent of that without considering conduction.
文摘为将真空断路器应用于更高电压等级,多断口真空断路器的研究成为行业内的热点问题。在分析总结此前研究成果的基础上,设计了一种由3个光控真空断路器模块(FCVIM)串联组成的126 k V真空断路器。断路器按照U形方式串联光控真空断路器模块,光控真空断路器模块主要由外绝缘部件、真空灭弧室、均压电容、永磁操动机构及其控制器和操动电源等部分组成,在低电位通过光纤控制技术对工作于高电位的永磁操动机构进行控制。对三断口真空断路器和单断口真空断路器模块分别施加雷电冲击电压,结果显示三断口真空断路器相对单断口真空断路器的击穿电压增益倍数为1.59;在并联不同均压电容和人为制造三断口不同步分断情况下研究三断口真空断路器暂态电压分布特性,发现低分散性操动机构和均压电容的应用可以有效提高其开断能力。三断口真空断路器在额定电压下成功开断40 k A短路电流,在不同试验方式下完成重合闸操作,并已顺利通过挂网试运行。