It is theoretically considered the propagation (first evidence) of new dispersive shear-horizontal (SH) acoustic waves in the piezoelectromagnetic (magnetoelectroelastic) composite plates. The studied two-phase compos...It is theoretically considered the propagation (first evidence) of new dispersive shear-horizontal (SH) acoustic waves in the piezoelectromagnetic (magnetoelectroelastic) composite plates. The studied two-phase composites (BaTiO3-CoFe2O4 and PZT-5H-Terfenol-D) possess the piezoelectric phase (BaTiO3, PZT-5H) and the piezomagnetic phase (CoFe2O4, Terfenol-D). The mechanical, electrical, and magnetic boundary conditions applied to both the upper and lower free surfaces of the plate are as follows: the mechanically free, electrically closed, and magnetically closed surfaces. As a result, the fundamental modes of two new dispersive SH-waves recently discovered in book [Zakharenko, A.A. (2012) ISBN: 978-3-659-30943-4] were numerically calculated. It was found that for large values of normalized plate thickness kd (k and d are the wavenumber and plate half-thickness, respectively) the velocities of both the new dispersive SH-waves can approach the nondispersive SH-SAW velocity of the piezoelectric exchange surface Melkumyan (PEESM) wave. It was also discussed that for small values of kd, the experimental study of the new dispersive SH-waves can be preferable in comparison with the nondispersive PEESM wave. The obtained results can be constructive for creation of various technical devices based on (non)dispersive SH-waves and two-phase smart materials. The new dispersive SH-waves propagating in the plates can be also employed for nondestructive testing and evaluation. Also, it is obvious that the plates can be used in technical devices instead of the corresponding bulk samples for further miniaturization.展开更多
Inspection of a pipeline is essential for the safe use of such facilities. A trial sensor using an electromagnetic acoustic transducer (EMAT), which can generate the SH-mode plate wave propagating in the circumferenti...Inspection of a pipeline is essential for the safe use of such facilities. A trial sensor using an electromagnetic acoustic transducer (EMAT), which can generate the SH-mode plate wave propagating in the circumferential direction, has been developed to realize this objective. It consists of a circulating electromagnetic induction coil around the pipe and many permanent magnets arranged on the surface of the pipe in the circumferential direction. It is postulated that the intensity of the SH-mode plate wave propagating in the circumferential direction is dependent on any defects in the circumferential direction. A resonance method was then utilized to obtain a stronger received signal. As a result, it was confirmed that the resonance status can be detected. The relationship between the signal intensity and the pipe thickness was then evaluated. It was confirmed that the wall thickness of about 20% can be detected under a static condition. Finally, a moving test has been executed by using an axially traveling device manufactured by trial. The test pipes with different sizes of drilled holes were prepared. The change in the received signal intensity according to different sizes of the drilled holes was successfully detected.展开更多
This theoretical work discovers four new dispersive shear-horizontal (SH) waves propagating in the transversely isotropic piezoelectromagnetic plate of class 6 mm. In this work, the following mechanical, electrical, a...This theoretical work discovers four new dispersive shear-horizontal (SH) waves propagating in the transversely isotropic piezoelectromagnetic plate of class 6 mm. In this work, the following mechanical, electrical, and magnetic boundary conditions at both the upper and lower free surfaces of the piezoelectromagnetic plate are utilized: the mechanically free surface, continuity of both the electrical and magnetic potentials, and continuity of both the electrical and magnetic inductions. The solutions for the new SH-wave velocities (dispersion relations) are found in explicit forms and then graphically studied. The graphical investigation has soundly illuminated several interesting peculiarities that were also discussed. The piezoelectromagnetic materials, also known as the magnetoelectroelastic media, are famous as smart materials because the electrical subsystem of the materials can interact with the magnetic subsystem via the mechanical subsystem, and vice versa. Therefore, it is very important to know the wave characteristics of such (composite) materials because of possible constitution of new technical devices with a high level of integration. It is obvious that the plate waves can be preferable for further miniaturization of the technical devices and used for the nondestructive testing and evaluation of thin piezoelectromagnetic films.展开更多
We study shear-horizontal (SH) waves in a rotated Y-cut quartz plate carrying an isotropic elastic layer of finite thickness.The three-dimensional theories of anisotropic elasticity and isotropic elasticity are used...We study shear-horizontal (SH) waves in a rotated Y-cut quartz plate carrying an isotropic elastic layer of finite thickness.The three-dimensional theories of anisotropic elasticity and isotropic elasticity are used for the quartz plate and the elastic layer,respectively.A transcen-dental frequency equation that determines the dispersion relations of the waves is obtained.The dispersion relations are obtained and plotted by solving the frequency equation using MATLAB.Approximate dispersion relations are also obtained analytically for two special cases.One is for long waves whose wavelength is much larger than the plate thickness.The other is for the case of a very thin elastic layer.The effects of the elastic layer on the dispersion relations are exam-ined.The results obtained are fundamental and useful to acoustic wave sensors for measuring the mechanical and geometric properties of the elastic layer.展开更多
文摘It is theoretically considered the propagation (first evidence) of new dispersive shear-horizontal (SH) acoustic waves in the piezoelectromagnetic (magnetoelectroelastic) composite plates. The studied two-phase composites (BaTiO3-CoFe2O4 and PZT-5H-Terfenol-D) possess the piezoelectric phase (BaTiO3, PZT-5H) and the piezomagnetic phase (CoFe2O4, Terfenol-D). The mechanical, electrical, and magnetic boundary conditions applied to both the upper and lower free surfaces of the plate are as follows: the mechanically free, electrically closed, and magnetically closed surfaces. As a result, the fundamental modes of two new dispersive SH-waves recently discovered in book [Zakharenko, A.A. (2012) ISBN: 978-3-659-30943-4] were numerically calculated. It was found that for large values of normalized plate thickness kd (k and d are the wavenumber and plate half-thickness, respectively) the velocities of both the new dispersive SH-waves can approach the nondispersive SH-SAW velocity of the piezoelectric exchange surface Melkumyan (PEESM) wave. It was also discussed that for small values of kd, the experimental study of the new dispersive SH-waves can be preferable in comparison with the nondispersive PEESM wave. The obtained results can be constructive for creation of various technical devices based on (non)dispersive SH-waves and two-phase smart materials. The new dispersive SH-waves propagating in the plates can be also employed for nondestructive testing and evaluation. Also, it is obvious that the plates can be used in technical devices instead of the corresponding bulk samples for further miniaturization.
文摘Inspection of a pipeline is essential for the safe use of such facilities. A trial sensor using an electromagnetic acoustic transducer (EMAT), which can generate the SH-mode plate wave propagating in the circumferential direction, has been developed to realize this objective. It consists of a circulating electromagnetic induction coil around the pipe and many permanent magnets arranged on the surface of the pipe in the circumferential direction. It is postulated that the intensity of the SH-mode plate wave propagating in the circumferential direction is dependent on any defects in the circumferential direction. A resonance method was then utilized to obtain a stronger received signal. As a result, it was confirmed that the resonance status can be detected. The relationship between the signal intensity and the pipe thickness was then evaluated. It was confirmed that the wall thickness of about 20% can be detected under a static condition. Finally, a moving test has been executed by using an axially traveling device manufactured by trial. The test pipes with different sizes of drilled holes were prepared. The change in the received signal intensity according to different sizes of the drilled holes was successfully detected.
文摘This theoretical work discovers four new dispersive shear-horizontal (SH) waves propagating in the transversely isotropic piezoelectromagnetic plate of class 6 mm. In this work, the following mechanical, electrical, and magnetic boundary conditions at both the upper and lower free surfaces of the piezoelectromagnetic plate are utilized: the mechanically free surface, continuity of both the electrical and magnetic potentials, and continuity of both the electrical and magnetic inductions. The solutions for the new SH-wave velocities (dispersion relations) are found in explicit forms and then graphically studied. The graphical investigation has soundly illuminated several interesting peculiarities that were also discussed. The piezoelectromagnetic materials, also known as the magnetoelectroelastic media, are famous as smart materials because the electrical subsystem of the materials can interact with the magnetic subsystem via the mechanical subsystem, and vice versa. Therefore, it is very important to know the wave characteristics of such (composite) materials because of possible constitution of new technical devices with a high level of integration. It is obvious that the plate waves can be preferable for further miniaturization of the technical devices and used for the nondestructive testing and evaluation of thin piezoelectromagnetic films.
基金supported by the National Natural Science Foundation of China (Nos. 11072116,10772087 and 10932004)Key Team of Technological Innovation of Zhejiang Province (Grant 2009R50025)+2 种基金Key Industrial Project of Bureau of Science and Technology,City of Ningbo (No. 2005B100015)grants from the Bureau of Science and Technology,City of Ningbo,through the International Collaboration Initiative (Project 2007B10052)Sponsored by K.C.Wong MagnaFund in Ningbo University
文摘We study shear-horizontal (SH) waves in a rotated Y-cut quartz plate carrying an isotropic elastic layer of finite thickness.The three-dimensional theories of anisotropic elasticity and isotropic elasticity are used for the quartz plate and the elastic layer,respectively.A transcen-dental frequency equation that determines the dispersion relations of the waves is obtained.The dispersion relations are obtained and plotted by solving the frequency equation using MATLAB.Approximate dispersion relations are also obtained analytically for two special cases.One is for long waves whose wavelength is much larger than the plate thickness.The other is for the case of a very thin elastic layer.The effects of the elastic layer on the dispersion relations are exam-ined.The results obtained are fundamental and useful to acoustic wave sensors for measuring the mechanical and geometric properties of the elastic layer.