为研究岩溶与非岩溶小流域水循环和氮循环的差异,该研究选取漓江流域青狮潭水库灌区内以农业为主的睦洞岩溶小流域和金龟非岩溶小流域为研究对象,利用水的氢氧同位素和硝酸盐的氮氧同位素结合贝叶斯同位素混合模型(Bayesian Model Stabl...为研究岩溶与非岩溶小流域水循环和氮循环的差异,该研究选取漓江流域青狮潭水库灌区内以农业为主的睦洞岩溶小流域和金龟非岩溶小流域为研究对象,利用水的氢氧同位素和硝酸盐的氮氧同位素结合贝叶斯同位素混合模型(Bayesian Model Stable Isotope Analysis in R,SIAR),对比两个小流域水体硝酸盐的污染源以及迁移过程。结果表明:水体硝酸盐污染的时空分布受流域水文地质及其伴生的地形地貌、土壤特性和土地利用类型的影响,以耕地为主且土壤层分布不连续的睦洞小流域水体硝酸盐的浓度均值(0.19~15.84 mg/L)、水的氢氧同位素(分别为-44.08‰~-19.63‰和-7.24‰~-1.55‰)以及硝酸盐的氮氧同位素(-1.65‰~53.98‰和0.04‰~13.74‰)值域都宽于以林地为主且土壤层相对较深厚的金龟非岩溶小流域;空间分布上,睦洞小流域北部补给区裸露岩溶石山果园下渗的氮肥和中部密集村庄下渗的动物粪便/生活污水在中部构造盆地区分散排泄不畅,造成G4~G7采样点井水的NO_(3)^(¯)浓度均值(11.96~15.84 mg/L)以及氮氧同位素丰度值(分别为0.65‰~28.23‰和2.46‰~14.43‰)偏高;时间尺度上,睦洞小流域碳酸盐岩风化形成的浅薄土壤层持水能力差且渗透性强,导致旱季土壤N和雨季动物粪便/生活污水对水体NO_(3)^(¯)的贡献率小于同季节的金龟小流域。研究结果可为岩溶与非岩溶区水环境治理提供科学依据。展开更多
Owing to the significant reductions in streamflow and an increase in human activities in recent years,the quality of surface water in Weihe River continues to pose environmental health concerns.We utilized hydrochemis...Owing to the significant reductions in streamflow and an increase in human activities in recent years,the quality of surface water in Weihe River continues to pose environmental health concerns.We utilized hydrochemistry and nitrogen and oxygen isotopes to elucidate the status and identify sources of nitrate pollution in the south and north banks for three seasons(flood,dry,and mean-flow periods)in the Weihe River watershed.A Bayesian isotope mixing model was applied to estimate the contributions of four potential NO_(3)-sources to river pollution(manure and sewage,soil nitrogen,inorganic fertilizer,and nitrate in precipitation).The U.S.Environmental Protection Agency(USEPA)evaluation model was implemented to evaluate the health risks associated with nitrate pollution in the surface water.Nitrate pollution was most severe during the dry period because the river flow was small.Due to the influence of the topography and land use type of the Weihe River,the pollution in the main stream was greater than that of the tributaries,and the pollution of the south bank was greater than that of the north bank.During the flood and mean-flow periods,δ^(15)N and δ^(18)O were mainly distributed in the NH_(4)^(+) of the fertilizer and soil nitrogen.During the dry period,δ^(15)N and δ^(18)O were mainly distributed in domestic sewage and manure regions.According to the Stable Isotope Analysis in R(SIAR)model,manure and sewage were the major nitrate sources during the dry period(73%).However,a decrease in the contribution from domestic sewage and manure was observed during the flood period(45%)compared to the dry period,but with a significantly increased contribution from soil nitrogen(23%)and inorganic fertilizer(21%).The health risk value in the dry period was higher than that in the wet and mean flow periods,and children are more susceptible to nitrate pollution than adults.Therefore,reducing the discharge of domestic sewage and manure and improving the utilization rate of nitrogen fertilizers may be effective measures to improve water quality in the watershed.展开更多
Interaction of antiworms with a worm population of e.g. hosts of worm infected and hosts of antiworm infected must be considered as a dynamic process. This study is an attempt for the first time to understand how intr...Interaction of antiworms with a worm population of e.g. hosts of worm infected and hosts of antiworm infected must be considered as a dynamic process. This study is an attempt for the first time to understand how introduction of antiworm affects the dynamic of network worm propagation. In this paper, we create a mathematical model (SIAR model) using ordinary differential equations to describe the interaction of worms and antiworms. Although idealized, the model demonstrates how the combination of a few proposed nonlinear interaction rules between antiworms and worms is able to generate a considerable variety of different kinds of responses. Taking the Blaster and Nachi worms as an example, we give a brief analysis for designing a practical antiworm system. To the best of our knowledge, there is no model for the spread of an antiworm that employs the passive scan and the finite lifetime and we believe that this is the first attempt on understanding the interaction between worms and antiworms.展开更多
文摘为研究岩溶与非岩溶小流域水循环和氮循环的差异,该研究选取漓江流域青狮潭水库灌区内以农业为主的睦洞岩溶小流域和金龟非岩溶小流域为研究对象,利用水的氢氧同位素和硝酸盐的氮氧同位素结合贝叶斯同位素混合模型(Bayesian Model Stable Isotope Analysis in R,SIAR),对比两个小流域水体硝酸盐的污染源以及迁移过程。结果表明:水体硝酸盐污染的时空分布受流域水文地质及其伴生的地形地貌、土壤特性和土地利用类型的影响,以耕地为主且土壤层分布不连续的睦洞小流域水体硝酸盐的浓度均值(0.19~15.84 mg/L)、水的氢氧同位素(分别为-44.08‰~-19.63‰和-7.24‰~-1.55‰)以及硝酸盐的氮氧同位素(-1.65‰~53.98‰和0.04‰~13.74‰)值域都宽于以林地为主且土壤层相对较深厚的金龟非岩溶小流域;空间分布上,睦洞小流域北部补给区裸露岩溶石山果园下渗的氮肥和中部密集村庄下渗的动物粪便/生活污水在中部构造盆地区分散排泄不畅,造成G4~G7采样点井水的NO_(3)^(¯)浓度均值(11.96~15.84 mg/L)以及氮氧同位素丰度值(分别为0.65‰~28.23‰和2.46‰~14.43‰)偏高;时间尺度上,睦洞小流域碳酸盐岩风化形成的浅薄土壤层持水能力差且渗透性强,导致旱季土壤N和雨季动物粪便/生活污水对水体NO_(3)^(¯)的贡献率小于同季节的金龟小流域。研究结果可为岩溶与非岩溶区水环境治理提供科学依据。
基金supported by National Natural Science Foundation of China(Grant No.41601017)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20190702)。
文摘Owing to the significant reductions in streamflow and an increase in human activities in recent years,the quality of surface water in Weihe River continues to pose environmental health concerns.We utilized hydrochemistry and nitrogen and oxygen isotopes to elucidate the status and identify sources of nitrate pollution in the south and north banks for three seasons(flood,dry,and mean-flow periods)in the Weihe River watershed.A Bayesian isotope mixing model was applied to estimate the contributions of four potential NO_(3)-sources to river pollution(manure and sewage,soil nitrogen,inorganic fertilizer,and nitrate in precipitation).The U.S.Environmental Protection Agency(USEPA)evaluation model was implemented to evaluate the health risks associated with nitrate pollution in the surface water.Nitrate pollution was most severe during the dry period because the river flow was small.Due to the influence of the topography and land use type of the Weihe River,the pollution in the main stream was greater than that of the tributaries,and the pollution of the south bank was greater than that of the north bank.During the flood and mean-flow periods,δ^(15)N and δ^(18)O were mainly distributed in the NH_(4)^(+) of the fertilizer and soil nitrogen.During the dry period,δ^(15)N and δ^(18)O were mainly distributed in domestic sewage and manure regions.According to the Stable Isotope Analysis in R(SIAR)model,manure and sewage were the major nitrate sources during the dry period(73%).However,a decrease in the contribution from domestic sewage and manure was observed during the flood period(45%)compared to the dry period,but with a significantly increased contribution from soil nitrogen(23%)and inorganic fertilizer(21%).The health risk value in the dry period was higher than that in the wet and mean flow periods,and children are more susceptible to nitrate pollution than adults.Therefore,reducing the discharge of domestic sewage and manure and improving the utilization rate of nitrogen fertilizers may be effective measures to improve water quality in the watershed.
基金supported in part by the National Natural Science Foundation of China(Grant No.60203004).
文摘Interaction of antiworms with a worm population of e.g. hosts of worm infected and hosts of antiworm infected must be considered as a dynamic process. This study is an attempt for the first time to understand how introduction of antiworm affects the dynamic of network worm propagation. In this paper, we create a mathematical model (SIAR model) using ordinary differential equations to describe the interaction of worms and antiworms. Although idealized, the model demonstrates how the combination of a few proposed nonlinear interaction rules between antiworms and worms is able to generate a considerable variety of different kinds of responses. Taking the Blaster and Nachi worms as an example, we give a brief analysis for designing a practical antiworm system. To the best of our knowledge, there is no model for the spread of an antiworm that employs the passive scan and the finite lifetime and we believe that this is the first attempt on understanding the interaction between worms and antiworms.