Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes...Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.展开更多
Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and R...Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and RANSAC algorithm.The device detection model and data set are established based on Faster RCNN.Finally,the number of training was continuously optimized,and when the loss function of Faster RCNN converged,the identification result of the device was obtained.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, ...To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness.展开更多
Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible fo...Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible for single threaded im-plementation to extract local feature descriptors for high-resolution images in real time. In this paper, an approach to parallelization of the SIFT algorithm is demonstrated using NVIDIA’s Graphics Processing Unit (GPU). The parallel-ization design for SIFT on GPUs is divided into two stages, a) Algorithm de-sign-generic design strategies which focuses on data and b) Implementation de-sign-architecture specific design strategies which focuses on optimally using GPU resources for maximum occupancy. Increasing memory latency hiding, eliminating branches and data blocking achieve a significant decrease in aver-age computational time. Furthermore, it is observed via Paraver tools that our approach to parallelization while optimizing for maximum occupancy allows GPU to execute memory bound SIFT algorithm at optimal levels.展开更多
The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SI...The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SIFT) is proposed,but its computational complexity and complication seriously affect the efficiency of the algorithm.In order to solve this problem,SIFT algorithm is proposed based on principal component analysis(PCA) dimensionality reduction.The algorithm first uses PCA algorithm,which has the function of screening feature points,to filter the feature points extracted in advance by the SIFT algorithm;then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points,thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction.In this paper,through experiments on the public ORL face database,the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm.展开更多
The scale-invariant feature transform (SIFT) is often applied to extract tie-points for airborne SAR images. When a pair of airborne SAR images differs with look angles obviously, shadow sizes and shapes of same objec...The scale-invariant feature transform (SIFT) is often applied to extract tie-points for airborne SAR images. When a pair of airborne SAR images differs with look angles obviously, shadow sizes and shapes of same objects will differ obviously. In main and slave SAR images, key-points around shadows often match as tie-points, although they are not homologous points. The phenomenon worsens the performance of SIFT on SAR images. On the basis of SIFT, a modified matching method is proposed to decrease the number of incorrect tie-points. High-resolution airborne SAR images are used in Experiments. Experiment results show that the proposed method is very effective to extract correct tie-points for SAR images.展开更多
Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the a...Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the ancient scripts,but lack of standard dataset for such scripts is a major constraint.Although many scholars and researchers have captured and uploaded inscription images on various websites,manual searching,downloading and extraction of these images is tedious and error prone.Web search queries return a vast number of irrelevant results,and manually extracting images for a specific script is not scalable.This paper proposes a novelmultistage system to identify the specific set of script images from a large set of images downloaded from web sources.The proposed system combines the two most important pattern matching techniques-Scale Invariant Feature Transform(SIFT)and Template matching,in a sequential pipeline,and by using the key strengths of each technique,the system can discard irrelevant images while retaining a specific type of images.展开更多
Precipitation prediction(PP)have become one of the significant research areas of deep learning(DL)and machine vision(MV)techniques are frequently used to predict the weather variables(WV).Since the climate change has ...Precipitation prediction(PP)have become one of the significant research areas of deep learning(DL)and machine vision(MV)techniques are frequently used to predict the weather variables(WV).Since the climate change has left significant impact upon weather variables(WV)and continuously changes are observed in temperature,humidity,cloud patterns and other factors.Although cloud images contain sufficient information to predict the precipitation pattern but due to changes in climate,the complex cloud patterns and rapid shape changing behavior of clouds are difficult to consider for rainfall prediction.Prediction of rainfall would provide more meticulous assistance to the farmers to know about the weather conditions and to care their cash crops.This research proposes a framework to classify the dark cloud patterns(DCP)for prediction of precipitation.The framework consists upon three steps to classify the cloud images,first step tackles noise reduction operations,feature selection and preparation of datasets.Second step construct the decision model by using convolutional neural network(CNN)and third step presents the performance visualization by using confusion matrix,precision,recall and accuracy measures.This research contributes(1)real-world clouds datasets(2)method to prepare datasets(3)highest classification accuracy to predict estimated as 96.90%.展开更多
This paper presents a pure vision based technique for 3D reconstruction of planet terrain. The reconstruction accuracy depends ultimately on an optimization technique known as 'bundle adjustment'. In vision te...This paper presents a pure vision based technique for 3D reconstruction of planet terrain. The reconstruction accuracy depends ultimately on an optimization technique known as 'bundle adjustment'. In vision techniques, the translation is only known up to a scale factor, and a single scale factor is assumed for the whole sequence of images if only one camera is used. If an extra camera is available, stereo vision based reconstruction can be obtained by binocular views. If the baseline of the stereo setup is known, the scale factor problem is solved. We found that direct application of classical bundle adjustment on the constraints inherent between the binocular views has not been tested. Our method incorporated this constraint into the conventional bundle adjustment method. This special binocular bundle adjustment has been performed on image sequences similar to planet terrain circumstances. Experimental results show that our special method enhances not only the localization accuracy, but also the terrain mapping quality.展开更多
Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based ...Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based rendering (IBR). Color correction between views is necessary to use multi-view systems in IBR to make audiences feel comfortable when views are switched or when a free viewpoint video is displayed. Color correction usually involves two steps: the first is to adjust camera parameters such as gain, brightness, and aperture before capture, and the second is to modify captured videos through image processing. This paper deals with the latter, which does not need a color pattern board. The proposed method uses scale invariant feature transform (SIFT) to detect correspondences, treats RGB channels independently, calculates lookup tables with an energy-minimization approach, and corrects captured video with these tables. The experimental results reveal that this approach works well.展开更多
An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (...An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (GPS) waypoint flight plans or more complex onboard intelligent systems. The UAS aircrafts have recently found extensive applications in military reconnaissance and surveillance, homeland security, precision agriculture, fire monitoring and analysis, and other different kinds of aids needed in disasters. Through surveillance videos captured by a UAS digital imaging payload over the interest areas, the corresponding UAS missions can be conducted. In this paper, the authors present an effective method to detect and extract architectural buildings under rural environment from UAS video sequences. The SIFT points are chosen as image features. The planar homography is adopted as the motion model between different image frames. The proposed algorithm is tested on real UAS video data.展开更多
Road visual navigation relies on accurate road models.This study was aimed at proposing an improved scale-invariant feature transform(SIFT)algorithm for recovering depth information from farmland road images,which wou...Road visual navigation relies on accurate road models.This study was aimed at proposing an improved scale-invariant feature transform(SIFT)algorithm for recovering depth information from farmland road images,which would provide a reliable path for visual navigation.The mean image of pixel value in five channels(R,G,B,S and V)were treated as the inspected image and the feature points of the inspected image were extracted by the Canny algorithm,for achieving precise location of the feature points and ensuring the uniformity and density of the feature points.The mean value of the pixels in 5×5 neighborhood around the feature point at an interval of 45ºin eight directions was then treated as the feature vector,and the differences of the feature vectors were calculated for preliminary matching of the left and right image feature points.In order to achieve the depth information of farmland road images,the energy method of feature points was used for eliminating the mismatched points.Experiments with a binocular stereo vision system were conducted and the results showed that the matching accuracy and time consuming for depth recovery when using the improved SIFT algorithm were 96.48%and 5.6 s,respectively,with the accuracy for depth recovery of-7.17%-2.97%in a certain sight distance.The mean uniformity,time consuming and matching accuracy for all the 60 images under various climates and road conditions were 50%-70%,5.0-6.5 s,and higher than 88%,respectively,indicating that performance for achieving the feature points(e.g.,uniformity,matching accuracy,and algorithm real-time)of the improved SIFT algorithm were superior to that of conventional SIFT algorithm.This study provides an important reference for navigation technology of agricultural equipment based on machine vision.展开更多
Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combin...Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios.展开更多
The scale invariant feature transform (SIFT) feature descriptor is invariant to image scale and location, and is robust to affine transformations and changes in illumination, so it is a powerful descriptor used in m...The scale invariant feature transform (SIFT) feature descriptor is invariant to image scale and location, and is robust to affine transformations and changes in illumination, so it is a powerful descriptor used in many applications, such as object recognition, video tracking, and gesture recognition. However, in noisy and non-rigid object recognition applications, especially for infrared human face recognition, SIFT-based algorithms may mismatch many feature points. This paper presents a star-styled window filter-SIFT (SWF-SIFT) scheme to improve the infrared human face recognition performance by filtering out incorrect matches. Performance comparisons between the SIFT and SWF-SIFT algorithms show the advantages of the SWF-SIFT algorithm through tests using a typical infrared human face database.展开更多
In this paper, we proposed a registration method by combining the morphological component analysis(MCA) and scale-invariant feature transform(SIFT) algorithm. This method uses the perception dictionaries,and combines ...In this paper, we proposed a registration method by combining the morphological component analysis(MCA) and scale-invariant feature transform(SIFT) algorithm. This method uses the perception dictionaries,and combines the Basis-Pursuit algorithm and the Total-Variation regularization scheme to extract the cartoon part containing basic geometrical information from the original image, and is stable and unsusceptible to noise interference. Then a smaller number of the distinctive key points will be obtained by using the SIFT algorithm based on the cartoon part of the original image. Matching the key points by the constrained Euclidean distance,we will obtain a more correct and robust matching result. The experimental results show that the geometrical transform parameters inferred by the matched key points based on MCA+SIFT registration method are more exact than the ones based on the direct SIFT algorithm.展开更多
Since the outbreak of Coronavirus Disease 2019(COVID-19),people are recommended to wear facial masks to limit the spread of the virus.Under the circumstances,traditional face recognition technologies cannot achieve sa...Since the outbreak of Coronavirus Disease 2019(COVID-19),people are recommended to wear facial masks to limit the spread of the virus.Under the circumstances,traditional face recognition technologies cannot achieve satisfactory results.In this paper,we propose a face recognition algorithm that combines the traditional features and deep features of masked faces.For traditional features,we extract Local Binary Pattern(LBP),Scale-Invariant Feature Transform(SIFT)and Histogram of Oriented Gradient(HOG)features from the periocular region,and use the Support Vector Machines(SVM)classifier to perform personal identification.We also propose an improved Convolutional Neural Network(CNN)model Angular Visual Geometry Group Network(A-VGG)to learn deep features.Then we use the decision-level fusion to combine the four features.Comprehensive experiments were carried out on databases of real masked faces and simulated masked faces,including frontal and side faces taken at different angles.Images with motion blur were also tested to evaluate the robustness of the algorithm.Besides,the experiment of matching a masked face with the corresponding full face is accomplished.The experimental results show that the proposed algorithm has state-of-the-art performance in masked face recognition,and the periocular region has rich biological features and high discrimination.展开更多
This paper describes a person identifcation method for a mobile robot which performs specifc person following under dynamic complicated environments like a school canteen where many persons exist.We propose a distance...This paper describes a person identifcation method for a mobile robot which performs specifc person following under dynamic complicated environments like a school canteen where many persons exist.We propose a distance-dependent appearance model which is based on scale-invariant feature transform(SIFT) feature.SIFT is a powerful image feature that is invariant to scale and rotation in the image plane and also robust to changes of lighting condition.However,the feature is weak against afne transformations and the identifcation power will thus be degraded when the pose of a person changes largely.We therefore use a set of images taken from various directions to cope with pose changes.Moreover,the number of SIFT feature matches between the model and an input image will decrease as the person becomes farther away from the camera.Therefore,we also use a distance-dependent threshold.The person following experiment was conducted using an actual mobile robot,and the quality assessment of person identifcation was performed.展开更多
This paper focuses mainly on semi-strapdown image homing guided (SSIHG) system design based on optical flow for a six-degree-of-freedom (6-DOF) axial-symmetric skid-to-turn missile. Three optical flow algorithms s...This paper focuses mainly on semi-strapdown image homing guided (SSIHG) system design based on optical flow for a six-degree-of-freedom (6-DOF) axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT) algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG) law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.展开更多
The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performanc...The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performance of the improved GC(IGC) to image matching is studied through extensive experiments on the Oxford A?ne dataset.Empirical results indicate that the proposed IGC yields quite stable and robust results,signi?cantly outperforms the original GC,and also can outperform the classical scale-invariant feature transform(SIFT) in most of the test cases.By integrating the IGC to the SIFT,the resulting of hybrid SIFT+IGC performs best over all other single descriptors in these experimental evaluations with various geometric transformations.展开更多
基金Project(XDA06020300)supported by the"Strategic Priority Research Program"of the Chinese Academy of SciencesProject(12511501700)supported by the Research on the Key Technology of Internet of Things for Urban Community Safety Based on Video Sensor networks
文摘Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.
文摘Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and RANSAC algorithm.The device detection model and data set are established based on Faster RCNN.Finally,the number of training was continuously optimized,and when the loss function of Faster RCNN converged,the identification result of the device was obtained.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
基金Supported by the National Natural Science Foundation of China(60905012)
文摘To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness.
文摘Scale Invariant Feature Transform (SIFT) algorithm is a widely used computer vision algorithm that detects and extracts local feature descriptors from images. SIFT is computationally intensive, making it infeasible for single threaded im-plementation to extract local feature descriptors for high-resolution images in real time. In this paper, an approach to parallelization of the SIFT algorithm is demonstrated using NVIDIA’s Graphics Processing Unit (GPU). The parallel-ization design for SIFT on GPUs is divided into two stages, a) Algorithm de-sign-generic design strategies which focuses on data and b) Implementation de-sign-architecture specific design strategies which focuses on optimally using GPU resources for maximum occupancy. Increasing memory latency hiding, eliminating branches and data blocking achieve a significant decrease in aver-age computational time. Furthermore, it is observed via Paraver tools that our approach to parallelization while optimizing for maximum occupancy allows GPU to execute memory bound SIFT algorithm at optimal levels.
基金Supported by the National Natural Science Foundation of China (No.61571222)the Natural Science Research Program of Higher Education Jiangsu Province (No.19KJD520005)+1 种基金Qing Lan Project of Jiangsu Province (Su Teacher’s Letter 2021 No.11)Jiangsu Graduate Scientific Research Innovation Program (No.KYCX21_1944)。
文摘The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SIFT) is proposed,but its computational complexity and complication seriously affect the efficiency of the algorithm.In order to solve this problem,SIFT algorithm is proposed based on principal component analysis(PCA) dimensionality reduction.The algorithm first uses PCA algorithm,which has the function of screening feature points,to filter the feature points extracted in advance by the SIFT algorithm;then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points,thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction.In this paper,through experiments on the public ORL face database,the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm.
基金Supported by the National Key Research and Development Program of China(No.2016YFB0502502)the Special Research and Trial Production Project of Sanya(No.sy17xs0113)
文摘The scale-invariant feature transform (SIFT) is often applied to extract tie-points for airborne SAR images. When a pair of airborne SAR images differs with look angles obviously, shadow sizes and shapes of same objects will differ obviously. In main and slave SAR images, key-points around shadows often match as tie-points, although they are not homologous points. The phenomenon worsens the performance of SIFT on SAR images. On the basis of SIFT, a modified matching method is proposed to decrease the number of incorrect tie-points. High-resolution airborne SAR images are used in Experiments. Experiment results show that the proposed method is very effective to extract correct tie-points for SAR images.
文摘Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the ancient scripts,but lack of standard dataset for such scripts is a major constraint.Although many scholars and researchers have captured and uploaded inscription images on various websites,manual searching,downloading and extraction of these images is tedious and error prone.Web search queries return a vast number of irrelevant results,and manually extracting images for a specific script is not scalable.This paper proposes a novelmultistage system to identify the specific set of script images from a large set of images downloaded from web sources.The proposed system combines the two most important pattern matching techniques-Scale Invariant Feature Transform(SIFT)and Template matching,in a sequential pipeline,and by using the key strengths of each technique,the system can discard irrelevant images while retaining a specific type of images.
文摘Precipitation prediction(PP)have become one of the significant research areas of deep learning(DL)and machine vision(MV)techniques are frequently used to predict the weather variables(WV).Since the climate change has left significant impact upon weather variables(WV)and continuously changes are observed in temperature,humidity,cloud patterns and other factors.Although cloud images contain sufficient information to predict the precipitation pattern but due to changes in climate,the complex cloud patterns and rapid shape changing behavior of clouds are difficult to consider for rainfall prediction.Prediction of rainfall would provide more meticulous assistance to the farmers to know about the weather conditions and to care their cash crops.This research proposes a framework to classify the dark cloud patterns(DCP)for prediction of precipitation.The framework consists upon three steps to classify the cloud images,first step tackles noise reduction operations,feature selection and preparation of datasets.Second step construct the decision model by using convolutional neural network(CNN)and third step presents the performance visualization by using confusion matrix,precision,recall and accuracy measures.This research contributes(1)real-world clouds datasets(2)method to prepare datasets(3)highest classification accuracy to predict estimated as 96.90%.
基金the National Natural Science Foundation of China (Nos. 60505017 and 60534070)the Science Planning Project of Zhejiang Province, China (No. 2005C14008)
文摘This paper presents a pure vision based technique for 3D reconstruction of planet terrain. The reconstruction accuracy depends ultimately on an optimization technique known as 'bundle adjustment'. In vision techniques, the translation is only known up to a scale factor, and a single scale factor is assumed for the whole sequence of images if only one camera is used. If an extra camera is available, stereo vision based reconstruction can be obtained by binocular views. If the baseline of the stereo setup is known, the scale factor problem is solved. We found that direct application of classical bundle adjustment on the constraints inherent between the binocular views has not been tested. Our method incorporated this constraint into the conventional bundle adjustment method. This special binocular bundle adjustment has been performed on image sequences similar to planet terrain circumstances. Experimental results show that our special method enhances not only the localization accuracy, but also the terrain mapping quality.
文摘Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based rendering (IBR). Color correction between views is necessary to use multi-view systems in IBR to make audiences feel comfortable when views are switched or when a free viewpoint video is displayed. Color correction usually involves two steps: the first is to adjust camera parameters such as gain, brightness, and aperture before capture, and the second is to modify captured videos through image processing. This paper deals with the latter, which does not need a color pattern board. The proposed method uses scale invariant feature transform (SIFT) to detect correspondences, treats RGB channels independently, calculates lookup tables with an energy-minimization approach, and corrects captured video with these tables. The experimental results reveal that this approach works well.
文摘An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (GPS) waypoint flight plans or more complex onboard intelligent systems. The UAS aircrafts have recently found extensive applications in military reconnaissance and surveillance, homeland security, precision agriculture, fire monitoring and analysis, and other different kinds of aids needed in disasters. Through surveillance videos captured by a UAS digital imaging payload over the interest areas, the corresponding UAS missions can be conducted. In this paper, the authors present an effective method to detect and extract architectural buildings under rural environment from UAS video sequences. The SIFT points are chosen as image features. The planar homography is adopted as the motion model between different image frames. The proposed algorithm is tested on real UAS video data.
基金This work was financially supported by the Zhejiang Science and Technology Department Basic Public Welfare Research Project(LGN18F030001)the Major Project of Zhejiang Science and Technology Department(2016C02G2100540).
文摘Road visual navigation relies on accurate road models.This study was aimed at proposing an improved scale-invariant feature transform(SIFT)algorithm for recovering depth information from farmland road images,which would provide a reliable path for visual navigation.The mean image of pixel value in five channels(R,G,B,S and V)were treated as the inspected image and the feature points of the inspected image were extracted by the Canny algorithm,for achieving precise location of the feature points and ensuring the uniformity and density of the feature points.The mean value of the pixels in 5×5 neighborhood around the feature point at an interval of 45ºin eight directions was then treated as the feature vector,and the differences of the feature vectors were calculated for preliminary matching of the left and right image feature points.In order to achieve the depth information of farmland road images,the energy method of feature points was used for eliminating the mismatched points.Experiments with a binocular stereo vision system were conducted and the results showed that the matching accuracy and time consuming for depth recovery when using the improved SIFT algorithm were 96.48%and 5.6 s,respectively,with the accuracy for depth recovery of-7.17%-2.97%in a certain sight distance.The mean uniformity,time consuming and matching accuracy for all the 60 images under various climates and road conditions were 50%-70%,5.0-6.5 s,and higher than 88%,respectively,indicating that performance for achieving the feature points(e.g.,uniformity,matching accuracy,and algorithm real-time)of the improved SIFT algorithm were superior to that of conventional SIFT algorithm.This study provides an important reference for navigation technology of agricultural equipment based on machine vision.
基金supported by National Natural Science Foundation of China(No.61103123)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios.
文摘The scale invariant feature transform (SIFT) feature descriptor is invariant to image scale and location, and is robust to affine transformations and changes in illumination, so it is a powerful descriptor used in many applications, such as object recognition, video tracking, and gesture recognition. However, in noisy and non-rigid object recognition applications, especially for infrared human face recognition, SIFT-based algorithms may mismatch many feature points. This paper presents a star-styled window filter-SIFT (SWF-SIFT) scheme to improve the infrared human face recognition performance by filtering out incorrect matches. Performance comparisons between the SIFT and SWF-SIFT algorithms show the advantages of the SWF-SIFT algorithm through tests using a typical infrared human face database.
基金the National Science Foundation of China(No.61471185)the Natural Science Foundation of Shandong Province(No.ZR2016FM21)+1 种基金Shandong Province Science and Technology Plan Project(No.2015GSF116001)Yantai City Key Research and Development Plan Project(Nos.2014ZH157 and2016ZH057)
文摘In this paper, we proposed a registration method by combining the morphological component analysis(MCA) and scale-invariant feature transform(SIFT) algorithm. This method uses the perception dictionaries,and combines the Basis-Pursuit algorithm and the Total-Variation regularization scheme to extract the cartoon part containing basic geometrical information from the original image, and is stable and unsusceptible to noise interference. Then a smaller number of the distinctive key points will be obtained by using the SIFT algorithm based on the cartoon part of the original image. Matching the key points by the constrained Euclidean distance,we will obtain a more correct and robust matching result. The experimental results show that the geometrical transform parameters inferred by the matched key points based on MCA+SIFT registration method are more exact than the ones based on the direct SIFT algorithm.
基金Supported by the Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics(XCXJH20220318)。
文摘Since the outbreak of Coronavirus Disease 2019(COVID-19),people are recommended to wear facial masks to limit the spread of the virus.Under the circumstances,traditional face recognition technologies cannot achieve satisfactory results.In this paper,we propose a face recognition algorithm that combines the traditional features and deep features of masked faces.For traditional features,we extract Local Binary Pattern(LBP),Scale-Invariant Feature Transform(SIFT)and Histogram of Oriented Gradient(HOG)features from the periocular region,and use the Support Vector Machines(SVM)classifier to perform personal identification.We also propose an improved Convolutional Neural Network(CNN)model Angular Visual Geometry Group Network(A-VGG)to learn deep features.Then we use the decision-level fusion to combine the four features.Comprehensive experiments were carried out on databases of real masked faces and simulated masked faces,including frontal and side faces taken at different angles.Images with motion blur were also tested to evaluate the robustness of the algorithm.Besides,the experiment of matching a masked face with the corresponding full face is accomplished.The experimental results show that the proposed algorithm has state-of-the-art performance in masked face recognition,and the periocular region has rich biological features and high discrimination.
基金supported by JSPS KAKENHI (No.23700203) and NEDO Intelligent RT Software Project
文摘This paper describes a person identifcation method for a mobile robot which performs specifc person following under dynamic complicated environments like a school canteen where many persons exist.We propose a distance-dependent appearance model which is based on scale-invariant feature transform(SIFT) feature.SIFT is a powerful image feature that is invariant to scale and rotation in the image plane and also robust to changes of lighting condition.However,the feature is weak against afne transformations and the identifcation power will thus be degraded when the pose of a person changes largely.We therefore use a set of images taken from various directions to cope with pose changes.Moreover,the number of SIFT feature matches between the model and an input image will decrease as the person becomes farther away from the camera.Therefore,we also use a distance-dependent threshold.The person following experiment was conducted using an actual mobile robot,and the quality assessment of person identifcation was performed.
基金supported by the Armament Research Fund of China (No.9020A02010313BQ01)
文摘This paper focuses mainly on semi-strapdown image homing guided (SSIHG) system design based on optical flow for a six-degree-of-freedom (6-DOF) axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT) algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG) law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.
基金the National Natural Science Foundation of China(Nos.60970109 and 61170228)
文摘The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performance of the improved GC(IGC) to image matching is studied through extensive experiments on the Oxford A?ne dataset.Empirical results indicate that the proposed IGC yields quite stable and robust results,signi?cantly outperforms the original GC,and also can outperform the classical scale-invariant feature transform(SIFT) in most of the test cases.By integrating the IGC to the SIFT,the resulting of hybrid SIFT+IGC performs best over all other single descriptors in these experimental evaluations with various geometric transformations.