RuS_2 thin films were prepared by the cost-effective chemicalmethod―successive ionic layer adsorption and reaction (SILAR). The structural, optical, andelectrical properties were investigated using X-ray diffraction,...RuS_2 thin films were prepared by the cost-effective chemicalmethod―successive ionic layer adsorption and reaction (SILAR). The structural, optical, andelectrical properties were investigated using X-ray diffraction, scanning electron microscopy,optical transmittance, and electrical resistivity methods. The results indicate that the films arehomogeneous and dense; the structure of the as-deposited films is amorphous and they crystallizeafter annealed at 500℃ for 30 min. The band gap of the as-deposited films is found to be 1.85 eV,and the electrical resistivity of them is in the order of 10~5 Ω·cm.展开更多
Ultrasonic Assisted SILAR method (UA-SILAR) was developed and highly oriented ZnO films were deposited on the glass substrate by this novel technique. The crystallinity and microstructure of as-deposited ZnO films w...Ultrasonic Assisted SILAR method (UA-SILAR) was developed and highly oriented ZnO films were deposited on the glass substrate by this novel technique. The crystallinity and microstructure of as-deposited ZnO films were analyzed by means of XRD and SEM. Moreover, the underling deposition mechanism of ZnO films was discussed. Results show that obtained ZnO films exhibit an excellent crystallinity with the preferentioal orientation of (002) plane. The crystalline grain of films is about 40nm in size,which is supported by both the Sherrer equation and the SEM result. However, the ZnO film is composed of numerous clustered purticulates in the size of 200 to 300nm, and each particulate is the compact aggregation of smaller ZnO crystalline grains. It is .speculated that the excellent crystallinity of ZnO films may chiefly originate from the cavatition effect of the ultrasonic rinsing process.展开更多
The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two tem- pera...The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two tem- peratures: ambient and 70℃. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.展开更多
基金This work is financially supported by the Tianjin Science and Technology Committee, China (No. F103004).
文摘RuS_2 thin films were prepared by the cost-effective chemicalmethod―successive ionic layer adsorption and reaction (SILAR). The structural, optical, andelectrical properties were investigated using X-ray diffraction, scanning electron microscopy,optical transmittance, and electrical resistivity methods. The results indicate that the films arehomogeneous and dense; the structure of the as-deposited films is amorphous and they crystallizeafter annealed at 500℃ for 30 min. The band gap of the as-deposited films is found to be 1.85 eV,and the electrical resistivity of them is in the order of 10~5 Ω·cm.
文摘Ultrasonic Assisted SILAR method (UA-SILAR) was developed and highly oriented ZnO films were deposited on the glass substrate by this novel technique. The crystallinity and microstructure of as-deposited ZnO films were analyzed by means of XRD and SEM. Moreover, the underling deposition mechanism of ZnO films was discussed. Results show that obtained ZnO films exhibit an excellent crystallinity with the preferentioal orientation of (002) plane. The crystalline grain of films is about 40nm in size,which is supported by both the Sherrer equation and the SEM result. However, the ZnO film is composed of numerous clustered purticulates in the size of 200 to 300nm, and each particulate is the compact aggregation of smaller ZnO crystalline grains. It is .speculated that the excellent crystallinity of ZnO films may chiefly originate from the cavatition effect of the ultrasonic rinsing process.
基金the Department of Atomic Energy (DAE)–BRNS,Mumbai,India for providing financial assistance through DAE-BRNS Major Research Project (No. 2010/34/34/BRNS/2060) dated 13th December 2010 for carrying out this research
文摘The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two tem- peratures: ambient and 70℃. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.