In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch in...In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].展开更多
In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, a...In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, and give the sufficient conditions caused by random environmental factors leading to the extinction of infectious diseases. Moreover, we verify the conditions for the persistence of infectious diseases in the mean sense. Finally, we provide the biology interpretation and some strategies to control the infectious diseases.展开更多
A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a uni...A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.展开更多
In this paper,we propose the global dynamics of an SIR epidemic model with distributed latent period,immunity,relapse,homestead-isolation of the susceptible and infectious individuals and general incidence rate.The re...In this paper,we propose the global dynamics of an SIR epidemic model with distributed latent period,immunity,relapse,homestead-isolation of the susceptible and infectious individuals and general incidence rate.The resulting model has a disease-free equilibrium and if Ro>1,then the SIR epidemic model admits a unique endemic equilibrium.By using suitable Lyapunov functionals and LaSalle's invariance principle,the global stability of the disease-free equilibrium and the endemic equilibrium is established,under suitable monotonicity conditions on the incidence function.展开更多
This study focuses on the stability and local bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals analytically,and numerically.The analytical results are obtained usi...This study focuses on the stability and local bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals analytically,and numerically.The analytical results are obtained using thenormal form technique and numerical results are obtained using the numerical continuation method.For this model,a number of bifurcations are studied,including the transcritical(pitchfork)and fip bifurcations,the Neimark-Sacker(NS)bifurcations,and the strong resonance bifurcations.We especially determine the dynamical behaviors of the model for higher iterations up to fourth-order.Numerical simulation is employed to present a closed invariant curve emerging about an NS point,and its breaking down to several closed invariant curves and eventuality giving rise to a chaotic strange attractor by increasing the bifurcation parameter.展开更多
In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start wi...In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.展开更多
In this paper,an investigation and analysis of a nonlinear fractional-order SIR epidemic model with Crowley-Martin type functional response and Holling type-II treatment rate are established along the memory.The exist...In this paper,an investigation and analysis of a nonlinear fractional-order SIR epidemic model with Crowley-Martin type functional response and Holling type-II treatment rate are established along the memory.The existence and stability of the equilibrium points are investigated.The sufficient conditions for the persistence of the disease are provided.First,a threshold value,Ro,is obtained which determines the stability of equilibria,then model equilibria are determined and their stability analysis is considered by using fractional Routh-Hurwitz stability criterion and fractional La-Salle invariant principle.The fractional derivative is taken in Caputo sense and the numerical solution of the model is obtained by LI scheme which involves the memory trace that can capture and integrate all past activity.Meanwhile,by using Lyapunov functional approach,the global dynamics of the endemic equilibrium point is discussed.Further,some numerical simulations are performed to illustrate the effectiveness of the theoretical results obtained.The outcome of the study reveals that the applied LI scheme is computationally very strong and effective to analyze fractional-order differential equations arising in disease dynamics.The results show that order of the fractional derivative has a significant effect on the dynamic process.Also,from the results,it is obvious that the memory effect is zero for p=1.When the fractional-order p is decreased from 1,the memory trace nonlinearly increases from 0,and its dynamics strongly depends on time.The memory effect points out the difference between the derivatives of the fractional-order and integer order.展开更多
In this paper, we are concerned with a reaction-diffusion SIR epidemic model with nonlinear incidence rate and non-local delay effect in a continuous bounded spatial domain. We introduce the basic reproduction number ...In this paper, we are concerned with a reaction-diffusion SIR epidemic model with nonlinear incidence rate and non-local delay effect in a continuous bounded spatial domain. We introduce the basic reproduction number R_0 of the model by the idea of next generation operator. By means of the theory of dynamical systems and uniform persistence, we investigate the global dynamics of the model in terms of R_0. Finally, we implement numerical simulations to show the feasibility of our results and explore some epidemiological insights.展开更多
Recently, Clancy [SIR epidemic models with general infectious period distribution, Statist. Prob. Left. 85 (2014) 1-5] has shown how SIR epidemics in which individuals' infection periods are not necessarily exponen...Recently, Clancy [SIR epidemic models with general infectious period distribution, Statist. Prob. Left. 85 (2014) 1-5] has shown how SIR epidemics in which individuals' infection periods are not necessarily exponentially distributed may be modeled in terms of a piecewise-deterministic Markov process (PDMP). In this paper, we present a more detailed description of the underlying PDMP, from which we analyze the population transmission number and the infection probability of a certain susceptible individual.展开更多
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no end...In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.展开更多
In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptib...Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptible individuals in population is as the detection threshold value. By the Poincaré map, theory of differential inequalities and differential equation geometry, the existence and orbital stability of the disease-free periodic solution are discussed. Theoretical results show that by state-dependent pulse vaccination we can make the proportion of infected individuals tend to zero, and control the transmission of disease in population.展开更多
The SIR(D) epidemiological model is defined through a system of transcendental equations, not solvable by elementary functions. In the present paper those equations are successfully replaced by approximate ones, whose...The SIR(D) epidemiological model is defined through a system of transcendental equations, not solvable by elementary functions. In the present paper those equations are successfully replaced by approximate ones, whose solutions are given explicitly in terms of elementary functions, originating, piece-wisely, from generalized logistic functions: they ensure <em>exact</em> (in the numerical sense) asymptotic values, besides to be quite practical to use, for example with fit to data algorithms;moreover they unveil a useful feature, that in fact, at least with very strict approximation, is also owned by the (numerical) solutions of the <em>exact</em> equations. The novelties in the work are: the way the approximate equations are obtained, using simple, analytic geometry considerations;the easy and practical formulation of the final approximate solutions;the mentioned useful feature, never disclosed before. The work’s method and result prove to be robust over a range of values of the well known non-dimensional parameter called <em>basic reproduction ratio</em>, that covers at least all the known epidemic cases, from influenza to measles: this is a point which doesn’t appear much discussed in analogous works.展开更多
In this paper,an SIRS epidemic model using Grunwald-Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the pop...In this paper,an SIRS epidemic model using Grunwald-Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the population during the outbreak of deadly infectious diseases.The criteria for the spread or extinction of the disease are derived and discussed on the basis of the basic reproduction number.The condition for the existence of Hopf bifurcation is discussed considering fractional order as a bifurcation parameter.Additionally,using the Grunwald-Letnikov approximation,the simulation is carried out to confirm the validity of analytic results graphically.Using the real data of COVID-19 in India recorded during the second wave from 15 May 2021 to 15 December 2021,we estimate the model parameters and find that the fractional-order model gives the closer forecast of the disease than the classical one.Both the analytical results and numerical simulations presented in this study suggest different policies for controlling or eradicating many infectious diseases.展开更多
A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ulti...A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.展开更多
In this paper,a discrete-time SIR epidemic model with nonlinear incidence and recovery rates is obtained by using the forward Euler’s method.The existence and stability of fixed points in this model are well studied....In this paper,a discrete-time SIR epidemic model with nonlinear incidence and recovery rates is obtained by using the forward Euler’s method.The existence and stability of fixed points in this model are well studied.The center manifold theorem and bifurcation theory are applied to analyze the bifurcation properties by using the discrete time step and the intervention level as control parameters.We discuss in detail some codimension-one bifurcations such as transcritical,period-doubling and Neimark–Sacker bifurcations,and a codimension-two bifurcation with 1:2 resonance.In addition,the phase portraits,bifurcation diagrams and maximum Lyapunov exponent diagrams are drawn to verify the correctness of our theoretical analysis.It is found that the numerical results are consistent with the theoretical analysis.More interestingly,we also found other bifurcations in the model during the numerical simulation,such as codimension-two bifurcations with 1:1 resonance,1:3 resonance and 1:4 resonance,generalized period-doubling and fold-flip bifurcations.The results show that the dynamics of the discrete-time model are richer than that of the continuous-time SIR epidemic model.Such a discrete-time model may not only be widely used to detect the pathogenesis of infectious diseases,but also make a great contribution to the prevention and control of infectious diseases.展开更多
In this paper,a stochastic epidemic system with both switching noise and white noise is proposed to research the dynamics of the diseases.Nonlinear incidence and vaccination strategies are also considered in the propo...In this paper,a stochastic epidemic system with both switching noise and white noise is proposed to research the dynamics of the diseases.Nonlinear incidence and vaccination strategies are also considered in the proposed model.By using the method of stochastic analysis,we point out the key parameters that determine the persistence and extinction of the diseases.Specifically,if R0^s is greater than 0,the stochastic system has a unique ergodic stationary distribution;while if R ^* is less than 0,the diseases will be extinct at an exponential rate.展开更多
In this paper, by applying Lyapunov functional approach, we establish a sufficient condition on the global stability of a "delayed" multi-group SIRS epidemic model with cure rate and incomplete recovery rate which d...In this paper, by applying Lyapunov functional approach, we establish a sufficient condition on the global stability of a "delayed" multi-group SIRS epidemic model with cure rate and incomplete recovery rate which does not depend on the delays and is an extension of the "light drug model" studied in the recent paper [Muroya, Li and Kuniya, Complete global analysis of an SIRS epidemic model with graded cure rate and incomplete recovery rate, J. Math. Anal. Appl. 410 (2014) 719-732] to a multi-group model. Applying a Lyapunov functional on total population of each compartment, we offer new techniques for the delayed system, how to prove the permanence, the existence of the endemic equilibrium and the global stability of disease-free equilibrium for the reproduction number R0 ≤ 1 and endemic equilibrium forR0 ≥ 1.展开更多
In this paper, we consider the backward Euler discretization derived from a continuous SIRS epidemic model, which contains a remaining problem that our discrete model has two solutions for infected population; one is ...In this paper, we consider the backward Euler discretization derived from a continuous SIRS epidemic model, which contains a remaining problem that our discrete model has two solutions for infected population; one is positive and the other is negative. Under an additional positiveness condition on infected population, we show that the backward Euler discretization is one of simple discrete-time analogue which preserves the global asymptotic stability of equilibria of the corresponding continuous model.展开更多
Environmental perturbations are unavoidable in the propagation of infectious diseases.In this paper,we introduce the stochasticity into the susceptible-infected recovered(SIR)model via thc^parameter perturbation metho...Environmental perturbations are unavoidable in the propagation of infectious diseases.In this paper,we introduce the stochasticity into the susceptible-infected recovered(SIR)model via thc^parameter perturbation method.The stochastic disturbances associated with the disease transmission coefficient and the mortality rate are presented with two perturbations:Gaussian white noise and Levy jumps,respectively.This idea provides an overview of disease dynamics under different random perturbation scenarios.By using new techniques and methods,we study certain interesting asymptotic properties of our perturbed model,namely:persistence in the mean,ergodicity and extinction of the disease.For illustrative purposes,numerical examples are presented for checking the theoretical study.展开更多
基金supported by Japan Society for the Promotion of Science (Grant Scientific Research (c), No. 24540219 to the first author, JSPS Fellows, No.237213 to the second author, and No. 222176 to the third author)
文摘In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].
文摘In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, and give the sufficient conditions caused by random environmental factors leading to the extinction of infectious diseases. Moreover, we verify the conditions for the persistence of infectious diseases in the mean sense. Finally, we provide the biology interpretation and some strategies to control the infectious diseases.
基金Natural Science Foundation of Hunan University of Technology,China(No.2012HZX08)the Special Foundation of National Independent Innovation Demonstration Area Construction of Zhuzhou(Applied Basic Research),China
文摘A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.
文摘In this paper,we propose the global dynamics of an SIR epidemic model with distributed latent period,immunity,relapse,homestead-isolation of the susceptible and infectious individuals and general incidence rate.The resulting model has a disease-free equilibrium and if Ro>1,then the SIR epidemic model admits a unique endemic equilibrium.By using suitable Lyapunov functionals and LaSalle's invariance principle,the global stability of the disease-free equilibrium and the endemic equilibrium is established,under suitable monotonicity conditions on the incidence function.
文摘This study focuses on the stability and local bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals analytically,and numerically.The analytical results are obtained using thenormal form technique and numerical results are obtained using the numerical continuation method.For this model,a number of bifurcations are studied,including the transcritical(pitchfork)and fip bifurcations,the Neimark-Sacker(NS)bifurcations,and the strong resonance bifurcations.We especially determine the dynamical behaviors of the model for higher iterations up to fourth-order.Numerical simulation is employed to present a closed invariant curve emerging about an NS point,and its breaking down to several closed invariant curves and eventuality giving rise to a chaotic strange attractor by increasing the bifurcation parameter.
文摘In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.
基金supported by the grant from China Postdoctoral Science Foundation(Grant No.2019M663653).
文摘In this paper,an investigation and analysis of a nonlinear fractional-order SIR epidemic model with Crowley-Martin type functional response and Holling type-II treatment rate are established along the memory.The existence and stability of the equilibrium points are investigated.The sufficient conditions for the persistence of the disease are provided.First,a threshold value,Ro,is obtained which determines the stability of equilibria,then model equilibria are determined and their stability analysis is considered by using fractional Routh-Hurwitz stability criterion and fractional La-Salle invariant principle.The fractional derivative is taken in Caputo sense and the numerical solution of the model is obtained by LI scheme which involves the memory trace that can capture and integrate all past activity.Meanwhile,by using Lyapunov functional approach,the global dynamics of the endemic equilibrium point is discussed.Further,some numerical simulations are performed to illustrate the effectiveness of the theoretical results obtained.The outcome of the study reveals that the applied LI scheme is computationally very strong and effective to analyze fractional-order differential equations arising in disease dynamics.The results show that order of the fractional derivative has a significant effect on the dynamic process.Also,from the results,it is obvious that the memory effect is zero for p=1.When the fractional-order p is decreased from 1,the memory trace nonlinearly increases from 0,and its dynamics strongly depends on time.The memory effect points out the difference between the derivatives of the fractional-order and integer order.
基金Supported by the Science and Technology Planed Projects of Gansu Province(18JR3RA217)Science Research Foundation for Higher Education Institutions of Gansu Province(2018B-032)
文摘In this paper, we are concerned with a reaction-diffusion SIR epidemic model with nonlinear incidence rate and non-local delay effect in a continuous bounded spatial domain. We introduce the basic reproduction number R_0 of the model by the idea of next generation operator. By means of the theory of dynamical systems and uniform persistence, we investigate the global dynamics of the model in terms of R_0. Finally, we implement numerical simulations to show the feasibility of our results and explore some epidemiological insights.
文摘Recently, Clancy [SIR epidemic models with general infectious period distribution, Statist. Prob. Left. 85 (2014) 1-5] has shown how SIR epidemics in which individuals' infection periods are not necessarily exponentially distributed may be modeled in terms of a piecewise-deterministic Markov process (PDMP). In this paper, we present a more detailed description of the underlying PDMP, from which we analyze the population transmission number and the infection probability of a certain susceptible individual.
基金This work is supported by the National Sciences Foundation of China (10471040)the Youth Science Foundations of Shanxi Province (20021003).
文摘In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.
文摘Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptible individuals in population is as the detection threshold value. By the Poincaré map, theory of differential inequalities and differential equation geometry, the existence and orbital stability of the disease-free periodic solution are discussed. Theoretical results show that by state-dependent pulse vaccination we can make the proportion of infected individuals tend to zero, and control the transmission of disease in population.
文摘The SIR(D) epidemiological model is defined through a system of transcendental equations, not solvable by elementary functions. In the present paper those equations are successfully replaced by approximate ones, whose solutions are given explicitly in terms of elementary functions, originating, piece-wisely, from generalized logistic functions: they ensure <em>exact</em> (in the numerical sense) asymptotic values, besides to be quite practical to use, for example with fit to data algorithms;moreover they unveil a useful feature, that in fact, at least with very strict approximation, is also owned by the (numerical) solutions of the <em>exact</em> equations. The novelties in the work are: the way the approximate equations are obtained, using simple, analytic geometry considerations;the easy and practical formulation of the final approximate solutions;the mentioned useful feature, never disclosed before. The work’s method and result prove to be robust over a range of values of the well known non-dimensional parameter called <em>basic reproduction ratio</em>, that covers at least all the known epidemic cases, from influenza to measles: this is a point which doesn’t appear much discussed in analogous works.
文摘In this paper,an SIRS epidemic model using Grunwald-Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the population during the outbreak of deadly infectious diseases.The criteria for the spread or extinction of the disease are derived and discussed on the basis of the basic reproduction number.The condition for the existence of Hopf bifurcation is discussed considering fractional order as a bifurcation parameter.Additionally,using the Grunwald-Letnikov approximation,the simulation is carried out to confirm the validity of analytic results graphically.Using the real data of COVID-19 in India recorded during the second wave from 15 May 2021 to 15 December 2021,we estimate the model parameters and find that the fractional-order model gives the closer forecast of the disease than the classical one.Both the analytical results and numerical simulations presented in this study suggest different policies for controlling or eradicating many infectious diseases.
基金National Natural Science Foundations of China(No.11071259,No.11371374)Research Fund for the Doctoral Program of Higher Education of China(No.20110162110060)
文摘A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.
基金supported by the NSF of Shandong Province(ZR2021MA016,ZR2019MA034,ZR2018BF018)the China Postdoctoral Science Foundation(2019M652349)the Youth Creative Team Sci-Tech Program of Shandong Universities(2019KJI007).
文摘In this paper,a discrete-time SIR epidemic model with nonlinear incidence and recovery rates is obtained by using the forward Euler’s method.The existence and stability of fixed points in this model are well studied.The center manifold theorem and bifurcation theory are applied to analyze the bifurcation properties by using the discrete time step and the intervention level as control parameters.We discuss in detail some codimension-one bifurcations such as transcritical,period-doubling and Neimark–Sacker bifurcations,and a codimension-two bifurcation with 1:2 resonance.In addition,the phase portraits,bifurcation diagrams and maximum Lyapunov exponent diagrams are drawn to verify the correctness of our theoretical analysis.It is found that the numerical results are consistent with the theoretical analysis.More interestingly,we also found other bifurcations in the model during the numerical simulation,such as codimension-two bifurcations with 1:1 resonance,1:3 resonance and 1:4 resonance,generalized period-doubling and fold-flip bifurcations.The results show that the dynamics of the discrete-time model are richer than that of the continuous-time SIR epidemic model.Such a discrete-time model may not only be widely used to detect the pathogenesis of infectious diseases,but also make a great contribution to the prevention and control of infectious diseases.
基金Z.Qiu is supported by the National Natural Science Foundation of China(NSFC)grant No.11671206X.Zhao is supported by the Scholarship Foundation of China Scholarship Council grant No.201906840072+2 种基金T.Feng is supported by the Scholarship Foundation of China Scholarship Council grant No.201806840120the Out-standing Chinese and Foreign Youth Exchange Program of China Association of Science and Technologythe Fundamental Research Funds for the Central Universities grant No.30918011339.
文摘In this paper,a stochastic epidemic system with both switching noise and white noise is proposed to research the dynamics of the diseases.Nonlinear incidence and vaccination strategies are also considered in the proposed model.By using the method of stochastic analysis,we point out the key parameters that determine the persistence and extinction of the diseases.Specifically,if R0^s is greater than 0,the stochastic system has a unique ergodic stationary distribution;while if R ^* is less than 0,the diseases will be extinct at an exponential rate.
文摘In this paper, by applying Lyapunov functional approach, we establish a sufficient condition on the global stability of a "delayed" multi-group SIRS epidemic model with cure rate and incomplete recovery rate which does not depend on the delays and is an extension of the "light drug model" studied in the recent paper [Muroya, Li and Kuniya, Complete global analysis of an SIRS epidemic model with graded cure rate and incomplete recovery rate, J. Math. Anal. Appl. 410 (2014) 719-732] to a multi-group model. Applying a Lyapunov functional on total population of each compartment, we offer new techniques for the delayed system, how to prove the permanence, the existence of the endemic equilibrium and the global stability of disease-free equilibrium for the reproduction number R0 ≤ 1 and endemic equilibrium forR0 ≥ 1.
文摘In this paper, we consider the backward Euler discretization derived from a continuous SIRS epidemic model, which contains a remaining problem that our discrete model has two solutions for infected population; one is positive and the other is negative. Under an additional positiveness condition on infected population, we show that the backward Euler discretization is one of simple discrete-time analogue which preserves the global asymptotic stability of equilibria of the corresponding continuous model.
文摘Environmental perturbations are unavoidable in the propagation of infectious diseases.In this paper,we introduce the stochasticity into the susceptible-infected recovered(SIR)model via thc^parameter perturbation method.The stochastic disturbances associated with the disease transmission coefficient and the mortality rate are presented with two perturbations:Gaussian white noise and Levy jumps,respectively.This idea provides an overview of disease dynamics under different random perturbation scenarios.By using new techniques and methods,we study certain interesting asymptotic properties of our perturbed model,namely:persistence in the mean,ergodicity and extinction of the disease.For illustrative purposes,numerical examples are presented for checking the theoretical study.