Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface ...Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.展开更多
Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers...Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers from severe phase segregation under illumination,which is particularly susceptible to residual lattice strain.Herein,we report a strain regulation strategy by using alkenamides terminated Ti_(3)C_(2)T_(x)MXenes as an additive into perovskite precursor.Apart from the role of a template for grain growth to obtain high-quality films,the stretchable alkyl chain promotes lattice shrinkage or expansion to form an elastic grain boundary to eliminate the spatially distributed stain and shut down ion migration channels.As a result,the all-inorganic perovskite solar cells based on CsPbIBr_(2)and CsPbI_(2)Br halides achieve prolonged device stability under harsh conditions and the best power conversion efficiencies up to 11.06%and 14.30%,respectively.展开更多
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p...Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.展开更多
Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition...Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h.展开更多
Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce...Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.展开更多
Patients with Bloom syndrome (BS) show an immunodeficiency, an enhanced sister chromatid exchanges (SCEs), a strong genetic instability and an increased predisposition to all. In order to investigate the different...Patients with Bloom syndrome (BS) show an immunodeficiency, an enhanced sister chromatid exchanges (SCEs), a strong genetic instability and an increased predisposition to all. In order to investigate the differential expression of BLM protein in hematopoietic tumor cell strains and study the effects of BLM gene on ultraviolet (UV)- or hydroxyurea (HU)-induced apoptosis, Western blot was used to detect the expression of BLM protein in normal human bone marrow mononuclear cells and 4 kinds of hematopoietic tumor cell strains. The 4 kinds of hematopoietic tumor cells were exposed to UV light with a germicidal UV lamp or treated with 2 mmol/L hydroxyurea and the apoptotic rate was detected by using AnnexinV-FITC. The results showed that these tumor cells expressed BLM protein higher than the normal human bone marrow mononuclear cells (P〈0.01). In the 4 hematopoietic tumor cells, BLM protein was all specially cleaved in response to UV- or HU-induced apoptosis. The increase of BLM protein expression may play an important role in the development of these tumors, and BLM proteolysis is likely to be a general feature of the apoptotic response.展开更多
To improve the hydrogen evolution rate in continuous hydrogen production of a fermentative hydrogen-producing bacteria strain B49 (AF481148 in EMBL), 4% immobilized cells by polyvinyl alcohol-boric acid method, with t...To improve the hydrogen evolution rate in continuous hydrogen production of a fermentative hydrogen-producing bacteria strain B49 (AF481148 in EMBL), 4% immobilized cells by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate in a column reactor obtain hydrogen yield of 2.31 mol H2/mol glucose and hydrogen evolution rate of 1435.4 ml/L culture·h respectively at medium retention time of 2 h with a medium containing l0 g glucose/L. As the cell density in gel beads is increased to 8%, hydrogen yield and hydrogen evolution rate for l0 g glucose/L are 2.34 mol H2/mol glucose and 2912.4 ml/L culture · h respectively at medium retention time of 1 h, and for molasses wastewater COD of 7505.9 mg/L hydrogen production potential of 205.6 ml/g COD and hydrogen evolution rate of 2057.7 ml/L culture·h at hydraulic retention time of 0.75 h are observed. In the continuous culture pH value keeps around 3.9 by self regulation.展开更多
O6-methylguanine-DNA methyltransferase (MGMT) plays an important role in repairing alkylated DNA. MGMT activity as well as cellular sensitivity to 1- ( 4- amino- 2-methyl-5-pyrimidinyl) methyl-3- ( 2-chloroethyl)-3-ni...O6-methylguanine-DNA methyltransferase (MGMT) plays an important role in repairing alkylated DNA. MGMT activity as well as cellular sensitivity to 1- ( 4- amino- 2-methyl-5-pyrimidinyl) methyl-3- ( 2-chloroethyl)-3-nitrosourea (ACNU) of 20 Chinese tumor cell strains were assayed. A linear response between MGMT activity and ACNU sensitivity (D10) was observed. The lower the MGMT activity In the cells, the more the sensitivity to ACNU killing. It suggested that assay of MGMT activity in tumor biopsy could be used as a guide to predict the effectiveness of ACNU treatment in chemotherapy of human cancer.展开更多
AIM: To study the inhibitory effects of Fuzheng Yiliuyin (Decoction for Suppressing Tumors by Strengthening the Body Resistance) in combination with chemotherapeutics on human gastric carcinoma cell strain. METHODS...AIM: To study the inhibitory effects of Fuzheng Yiliuyin (Decoction for Suppressing Tumors by Strengthening the Body Resistance) in combination with chemotherapeutics on human gastric carcinoma cell strain. METHODS: Fuzheng Yiliuyin (ZY) combined with various kinds of chemotherapeutics was put into two kinds of cultivated human gastric carcinoma cell strains, then its inhibitory effects on human gastric carcinoma cell strains were determind by the MTT method. Flow cytorneter was used to assay the apoptosis rate, and the ultrastructure of gastric carcinoma cells was observed under transmission electron microscope. RESULTS: Obvious apoptosis was seen in gastric carcinoma cells after treatment with ZY for 72 h. ZY and chemical drugs had synergistic inhibition effects on the cultivated gastric carcinoma cells, but the effects were different on various cell strains. The inhibitory effects of ZY could be strengthened by cytotoxic action and apoptosis. ZY combined with tluorouracil, etoposide and cisplatin (EFP) chemotherapeutics had better inhibitory effects on SGC-7901, while ZY combined with EFP or with DDP chemotherapeutics had better inhibitory effects than other drugs on MGC-803. CONCLUSION: ZY induces apoptosis and inhibits the growth of gastric carcinoma cells. ZY has the synergistic function of chemotherapeutics.展开更多
Mechanobiology has been a highly recognized field in studying the importance of physical forces in physiologies at the molecular,cellular,tissue,organ and body-levels.Beside the intensive work focusing on the fine loc...Mechanobiology has been a highly recognized field in studying the importance of physical forces in physiologies at the molecular,cellular,tissue,organ and body-levels.Beside the intensive work focusing on the fine local biomechanical forces,the long-range force which can propagate through a relatively distant scale(in hundreds of micrometers and beyond)has been an intriguing topic with increasing attentions in recent years.The collective functions at cell population level often rely on cell-cell communications with or without direct contacts.Recent progresses including our own work indicate that the long-range biomechanical force propagating across scales far beyond single cell size may reserve the capability to trigger coordinative biological responses within cell population.Whether and how cells communicate mechanically in a distant manner remains largely to be explored.In respiratory system,the mechanical property of airway smooth muscle(ASM)is associated with asthma attack with prolonged contraction during airway hyper-responsiveness.In this work,we found that ASM cells rapidly self-assembled into a well-constructed network on 3D matrigel containing type I collagen(COL I),which required the collective functions and coordination of thousands of cells completed within 12-16 hours.Cells were assembled with aligned actin stress fibers and elongated nuclei.The assembling process relied on the long-range mechanical forces across the matrix to direct cell-cell distant interactions.We further found that single ASM cells could rapidly initiate multiple buds precisely pointing to neighboring cells in distance,which relied on cell traction force and force strain on the matrix.Beads tracking assay demonstrated the long-range transmission of cellular traction force to distant locations,and modeling of maximum strain distribution on matrix by finite element method predicted the consistency with cell directional protrusions and movements in experiments.Cells could sense each other in distance to move directionally on both non-fibrous matrigel and in much more efficient way when containing COL I.Cells recruited COL I from the hydrogel to build nearly identical COL I fibrous network to mechanically stabilize the cell network.Our results revealed that ASM cells can sense the traction strain transmitted through matrix to initiate distant communications and rapidly coordinate the network assembly at the population level through active cell-matrix interactions.As an interesting phenomenon,cells sound able to’make phone call’via the role of long-range mechanical force.In summary,this work demonstrated that long-range biomechanical force facilitates the collective functions of ASM cell population for network assembly.The cells reacted to traction strain on the matrix for distant communications,which resulted in directional budding and movement.Fibrous COL I had important roles in facilitating the efficiency of force transmission to induce the assembly and stabilizing the cell network.This work has helped advance the understanding of the feature andfunction of long-range biomechanical force at the cell population level.The observed high mechano-sensitivity of ASM cells might suggest a re-enforced feedback of enhanced contraction by excessive ASM under asthmatic condition.展开更多
Direct alcohol fuel cells(DAFCs)are powered by the alcohol electro-oxidation reaction(AOR),where an electrocatalyst with an optimal electronic structure can accelerate the sluggish AOR.Interestingly,strain engineering...Direct alcohol fuel cells(DAFCs)are powered by the alcohol electro-oxidation reaction(AOR),where an electrocatalyst with an optimal electronic structure can accelerate the sluggish AOR.Interestingly,strain engineering in hetero-catalysis offers a promising route to boost their catalytic activity.Herein,we report on a class of monodispersed ultrathin twisty PdBi alloy nanowires(TNWs)assemblies with face-centered structures that drive AORs.These thin nanowire structures expose a large number of reactive sites.Strikingly,Pd_(6)Bi_(1)TNWs show an excellent current density of 2066,3047,and 1231 mA mg_(Pd)^(-1)for oxidation of ethanol,ethylene glycol,and glycerol,respectively.The“volcano-like”behaviors observed on PdBi TNWs for AORs indicate that the maximum catalytic mass activity is a well balance between active intermediates and blocking species at the interface.This study offers an effective and universal method to build novel nanocatalysts in various applications by rationally designing highly efficient catalysts with specific strain.展开更多
Objective: To investigate the expression of cyclooxygenase-2 (COX-2) mRNA in drug-sensitive cell and drugresistant clones of ovarian cancer cell lines. Methods: RT-PCR and immunocytochemistry were used to investig...Objective: To investigate the expression of cyclooxygenase-2 (COX-2) mRNA in drug-sensitive cell and drugresistant clones of ovarian cancer cell lines. Methods: RT-PCR and immunocytochemistry were used to investigate the expression of cyclooxygenase-2 in 3 clones drug-sensitive and 5 clones drug-resistant ovarian cancer cell. Results: Strong COX-2 mRNA expressions were detected in 3 clones of drug-sensitive cell and weak expressions were detected in 5 clones of drug-resistant cell. The protein expression of COX-2 in drug-sensitive cell was strongly positive reaction in immunocytochemistry stain and there was a weak positive reaction in 5 clones of drug-resistant cell. Conclusion: The expression of COX-2 mRNA in drug-sensitive cell strains is much higher than that in drugresistant strains of ovarian cancer cell lines, providing a basis of the chemoprevention for ovarian cancer.展开更多
Summary: The role of hepatic CD69+ natural killer (NK) cells in virus-induced severe liver injury and subsequent hepatic failure is not well defined. In this study, a mouse model of fulminant liver failure (FHF)...Summary: The role of hepatic CD69+ natural killer (NK) cells in virus-induced severe liver injury and subsequent hepatic failure is not well defined. In this study, a mouse model of fulminant liver failure (FHF) induced by murine hepatitis virus strain 3 (MHV-3) was used to study the role of hepatic CD69+NK cells in the development of FHF. The CD69 expression in NK cells in the liver, spleen, bone marrow and peripheral blood was detected by using flow cytometry. The correlation between the CD69 level in hepatic NK cells and liver injury was studied. The functional marker (CD107a), and activating and inhibitory receptor (NKG2D and NKG2A) expressed on CD69+NK cells and CD69-NK cells were detected by using flow cytometry. Pro-inflammatory cytokines (IL-9, IFN-y and TNF-a) were also examined by using intracellular staining. After MHV-3 infection, the number of CD69+NK cells in the liver of BALB/cJ mice was increased markedly and peaked at 72 h post-infection. Similar changes were also observed in the spleen, bone marrow and peripheral blood. Meanwhile, the CD69 expression in hepatic NK cells was highly correlated with the serum level of ALT and AST. The expression of CD107a and NKG2D, as well as the production of TNF-a, IFN-7 and IL-9 in hepatic CD69+NK cells was all significantly up-regulated during 48-72 h post-infection. In contrast, the NKG2A expression was increased in hepatic CD69-NK cells but not in CD69+NK cells. These results suggested that hepatic CD69+NK cells play a pivotal role in the pathogenesis of FHF by enhancing degranulation and cytotoxic ability of NK cells and increasing the production of pro-inflammatory cytokines.展开更多
The study and establishment of leukemia strains and leukemia cell lines have made great achievement in China.It has been extended from mice to rat model and related to explore human leukemia cell line and heterotransp...The study and establishment of leukemia strains and leukemia cell lines have made great achievement in China.It has been extended from mice to rat model and related to explore human leukemia cell line and heterotransplantable tumor strains. The cellular types of leukemia strain have included Iymphocytic,tmyelocytic,ecythroleukmia and megakaryoblastic cell strain.展开更多
A series of bioassays such as sister chromatid exchange frequencies ( SCE.), chromosomal aberration ( CA ), micronuclel rate (MN) and cell-cycle delay have been used to detecting the genotoxic effect of cigarette smok...A series of bioassays such as sister chromatid exchange frequencies ( SCE.), chromosomal aberration ( CA ), micronuclel rate (MN) and cell-cycle delay have been used to detecting the genotoxic effect of cigarette smoke condensate (CSC) on human diploid cell 2BS strain. The results suggested that a higher SCE, ( 17. 0/ cell) was observed In 2BS cells treated with CSC at 100 μg/ml, as compared with 6. 9/cell of the background (P<0. 001). CA rate was significantly increased from 4% to 36% In cells treated with 10 μg/ml CSC (P< 0.001). MN rate varied from 9 -26‰ In cells treated with CSC compared to that of control (6‰). Meanwhile, the cell-cycle of cells was markedly delayed by CSC. The survival rate of 2BS cells declined to 59. 6% for treatment with CSC at 200 μg/ ml. There was a dose-effect response In SCE., CA, MN rate. We proposed that active oxygen might responsible for genotoxiclty of CSC on cells.展开更多
This study was conducted to explore the multiplication pattern of the recombinant strain Re-7 of avian influenza virus subtype H5 in Madin Darby Canine Kidney (MDCK) cells and to determine the optimal multiplicity o...This study was conducted to explore the multiplication pattern of the recombinant strain Re-7 of avian influenza virus subtype H5 in Madin Darby Canine Kidney (MDCK) cells and to determine the optimal multiplicity of infection (MOI) and the optimal time for virus harvest. The recombinant strain Re-7 was inoculated at different MOIs into MDCK cells grown in serum-free medium in 100 L bioreactors for replication. Then, the hemagglutination(HA) titer, 50% tissue culture infectious dose (TCID50) and 50% embryo infectious dose (EID50) of culture medium were measured once every 12 h from 24 h after virus inoculation to determine the optimal MOI. After that, virus was inoculated at the optimal MOI determined above into MDCK cells for large-scale virus replication to determine the optimal time for virus harvest. The results showed that the optimal MOI was 10 2, and the optimal time for virus harvest was 60 h after inoculation. Under these conditions, the HA titer, TCIDso per 1 mL and EIDso per 0.1 mL were increased to 1:102 4, 10^7.33 and 10^6.83, respectively. This study provides relatively stable parameters for large-scale production of the recombinant strain Re-7 of avian influenza virus subtype H5.展开更多
目的探究1型单纯疱疹病毒(herpes simplex virus type 1,HSV-1)突变株M6感染人支气管上皮细胞(16HBE细胞)后对巨噬细胞介导的免疫反应的影响。方法用HSV-1感染16HBE细胞分析培养液中细胞因子的变化;将巨噬细胞与被HSV-1毒株感染的16HBE...目的探究1型单纯疱疹病毒(herpes simplex virus type 1,HSV-1)突变株M6感染人支气管上皮细胞(16HBE细胞)后对巨噬细胞介导的免疫反应的影响。方法用HSV-1感染16HBE细胞分析培养液中细胞因子的变化;将巨噬细胞与被HSV-1毒株感染的16HBE细胞的上清液共培养并通过尾静脉回输至小鼠体内,分别在第1、3、7、28、56、90天对小鼠淋巴结细胞因子表达水平、脾脏T细胞比例变化、小鼠中和抗体表达水平以及特异性T细胞反应进行检测。结果16HBE细胞被HSV-1突变株感染后,上清液中募集和激活巨噬细胞相关的细胞因子均较高水平表达但略低于野毒株组;尾静脉回输实验后,突变株组小鼠淋巴结炎症因子、趋化因子和T细胞的比例随时间发生了不同的变化,并引起了弱于野毒株组的体液免疫和强于野毒株组的特异性T细胞免疫反应,且仅极少数与野毒株组具有显著性差异(P<0.05)。结论16HBE细胞被HSV-1突变株M6感染后能够释放募集和激活巨噬细胞的细胞因子,使巨噬细胞携带HSV-1突变株的特异性活化信息,激活了宿主的免疫系统,诱导了宿主的体液免疫和细胞免疫。展开更多
基金National Natural Science Foundation of China (62104136, 22179051, 62204098, 52104258)Project of Shandong Province Higher Educational Young Innovative Team (2022KJ218)+3 种基金China Postdoctoral Science Foundation (2023M732104)Qingdao Postdoctoral Funding Program (QDBSH20220201002)Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202303032)Shandong Provincial Natural Science Foundation (ZR2021ME016)。
文摘Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.
基金National Natural Science Foundation of China,Grant/Award Numbers:22109053,22179051,62104136Special Fund of Taishan Scholar Program of Shandong Province,Grant/Award Number:tsqnz20221141+3 种基金National Key Research and Development Program of China,Grant/Award Number:2021YFE0111000Spring City Plan:the High-level Talent Promotion and Training Project of Kunming,Grant/Award Number:2022SCP005Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110548Guangzhou Science and Technology Planning Project,Grant/Award Number:202102020775。
文摘Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers from severe phase segregation under illumination,which is particularly susceptible to residual lattice strain.Herein,we report a strain regulation strategy by using alkenamides terminated Ti_(3)C_(2)T_(x)MXenes as an additive into perovskite precursor.Apart from the role of a template for grain growth to obtain high-quality films,the stretchable alkyl chain promotes lattice shrinkage or expansion to form an elastic grain boundary to eliminate the spatially distributed stain and shut down ion migration channels.As a result,the all-inorganic perovskite solar cells based on CsPbIBr_(2)and CsPbI_(2)Br halides achieve prolonged device stability under harsh conditions and the best power conversion efficiencies up to 11.06%and 14.30%,respectively.
基金the supports from the National Natural Science Foundation of China(Nos.62264012,62164009)Inner Mongolia Higher Education Research Project(No.NJZZ22343)+1 种基金Inner Mongolia University Research Foundation for Advanced Talents in 2021(No.10000-21311201/005)the Inner Mongolia Autonomous Region for Advanced Talents in 2020(No.12000-12102628)。
文摘Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.
基金supported by the National Natural Science Foundation of China (61604131,62025403)the Natural Science Foundation of Zhejiang Province (LY19F040009)+1 种基金the Fundamental Research Funds of Zhejiang SciTech University (23062120-Y)the Open Project of Key Laboratory of Solar Energy Utilization and Energy Saving Technology of Zhejiang Province (ZJS-OP-2020-07)
文摘Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h.
基金Qingdao Postdoctoral Funding Program,Grant/Award Number:QDBSH20220201002National Key Research and Development Program of China,Grant/Award Number:2021YFE0111000+1 种基金Project of Shandong Province Higher Educational Young Innovative Team,Grant/Award Number:2022KJ218National Natural Science Foundation of China,Grant/Award Numbers:62104136,22179051,22109053。
文摘Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.
文摘Patients with Bloom syndrome (BS) show an immunodeficiency, an enhanced sister chromatid exchanges (SCEs), a strong genetic instability and an increased predisposition to all. In order to investigate the differential expression of BLM protein in hematopoietic tumor cell strains and study the effects of BLM gene on ultraviolet (UV)- or hydroxyurea (HU)-induced apoptosis, Western blot was used to detect the expression of BLM protein in normal human bone marrow mononuclear cells and 4 kinds of hematopoietic tumor cell strains. The 4 kinds of hematopoietic tumor cells were exposed to UV light with a germicidal UV lamp or treated with 2 mmol/L hydroxyurea and the apoptotic rate was detected by using AnnexinV-FITC. The results showed that these tumor cells expressed BLM protein higher than the normal human bone marrow mononuclear cells (P〈0.01). In the 4 hematopoietic tumor cells, BLM protein was all specially cleaved in response to UV- or HU-induced apoptosis. The increase of BLM protein expression may play an important role in the development of these tumors, and BLM proteolysis is likely to be a general feature of the apoptotic response.
文摘To improve the hydrogen evolution rate in continuous hydrogen production of a fermentative hydrogen-producing bacteria strain B49 (AF481148 in EMBL), 4% immobilized cells by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate in a column reactor obtain hydrogen yield of 2.31 mol H2/mol glucose and hydrogen evolution rate of 1435.4 ml/L culture·h respectively at medium retention time of 2 h with a medium containing l0 g glucose/L. As the cell density in gel beads is increased to 8%, hydrogen yield and hydrogen evolution rate for l0 g glucose/L are 2.34 mol H2/mol glucose and 2912.4 ml/L culture · h respectively at medium retention time of 1 h, and for molasses wastewater COD of 7505.9 mg/L hydrogen production potential of 205.6 ml/g COD and hydrogen evolution rate of 2057.7 ml/L culture·h at hydraulic retention time of 0.75 h are observed. In the continuous culture pH value keeps around 3.9 by self regulation.
文摘O6-methylguanine-DNA methyltransferase (MGMT) plays an important role in repairing alkylated DNA. MGMT activity as well as cellular sensitivity to 1- ( 4- amino- 2-methyl-5-pyrimidinyl) methyl-3- ( 2-chloroethyl)-3-nitrosourea (ACNU) of 20 Chinese tumor cell strains were assayed. A linear response between MGMT activity and ACNU sensitivity (D10) was observed. The lower the MGMT activity In the cells, the more the sensitivity to ACNU killing. It suggested that assay of MGMT activity in tumor biopsy could be used as a guide to predict the effectiveness of ACNU treatment in chemotherapy of human cancer.
基金Supported by TCM Administration Bureau of Shannxi Province,China, No. 199704
文摘AIM: To study the inhibitory effects of Fuzheng Yiliuyin (Decoction for Suppressing Tumors by Strengthening the Body Resistance) in combination with chemotherapeutics on human gastric carcinoma cell strain. METHODS: Fuzheng Yiliuyin (ZY) combined with various kinds of chemotherapeutics was put into two kinds of cultivated human gastric carcinoma cell strains, then its inhibitory effects on human gastric carcinoma cell strains were determind by the MTT method. Flow cytorneter was used to assay the apoptosis rate, and the ultrastructure of gastric carcinoma cells was observed under transmission electron microscope. RESULTS: Obvious apoptosis was seen in gastric carcinoma cells after treatment with ZY for 72 h. ZY and chemical drugs had synergistic inhibition effects on the cultivated gastric carcinoma cells, but the effects were different on various cell strains. The inhibitory effects of ZY could be strengthened by cytotoxic action and apoptosis. ZY combined with tluorouracil, etoposide and cisplatin (EFP) chemotherapeutics had better inhibitory effects on SGC-7901, while ZY combined with EFP or with DDP chemotherapeutics had better inhibitory effects than other drugs on MGC-803. CONCLUSION: ZY induces apoptosis and inhibits the growth of gastric carcinoma cells. ZY has the synergistic function of chemotherapeutics.
基金supported financially by Natural Science Foundation of China ( 11532003,11872129, 31670950)Natural Science Foundation of Jiangsu Province ( BK20181416)CZSTB Grant ( CZ20180017) from Changzhou City,Jiangsu Province
文摘Mechanobiology has been a highly recognized field in studying the importance of physical forces in physiologies at the molecular,cellular,tissue,organ and body-levels.Beside the intensive work focusing on the fine local biomechanical forces,the long-range force which can propagate through a relatively distant scale(in hundreds of micrometers and beyond)has been an intriguing topic with increasing attentions in recent years.The collective functions at cell population level often rely on cell-cell communications with or without direct contacts.Recent progresses including our own work indicate that the long-range biomechanical force propagating across scales far beyond single cell size may reserve the capability to trigger coordinative biological responses within cell population.Whether and how cells communicate mechanically in a distant manner remains largely to be explored.In respiratory system,the mechanical property of airway smooth muscle(ASM)is associated with asthma attack with prolonged contraction during airway hyper-responsiveness.In this work,we found that ASM cells rapidly self-assembled into a well-constructed network on 3D matrigel containing type I collagen(COL I),which required the collective functions and coordination of thousands of cells completed within 12-16 hours.Cells were assembled with aligned actin stress fibers and elongated nuclei.The assembling process relied on the long-range mechanical forces across the matrix to direct cell-cell distant interactions.We further found that single ASM cells could rapidly initiate multiple buds precisely pointing to neighboring cells in distance,which relied on cell traction force and force strain on the matrix.Beads tracking assay demonstrated the long-range transmission of cellular traction force to distant locations,and modeling of maximum strain distribution on matrix by finite element method predicted the consistency with cell directional protrusions and movements in experiments.Cells could sense each other in distance to move directionally on both non-fibrous matrigel and in much more efficient way when containing COL I.Cells recruited COL I from the hydrogel to build nearly identical COL I fibrous network to mechanically stabilize the cell network.Our results revealed that ASM cells can sense the traction strain transmitted through matrix to initiate distant communications and rapidly coordinate the network assembly at the population level through active cell-matrix interactions.As an interesting phenomenon,cells sound able to’make phone call’via the role of long-range mechanical force.In summary,this work demonstrated that long-range biomechanical force facilitates the collective functions of ASM cell population for network assembly.The cells reacted to traction strain on the matrix for distant communications,which resulted in directional budding and movement.Fibrous COL I had important roles in facilitating the efficiency of force transmission to induce the assembly and stabilizing the cell network.This work has helped advance the understanding of the feature andfunction of long-range biomechanical force at the cell population level.The observed high mechano-sensitivity of ASM cells might suggest a re-enforced feedback of enhanced contraction by excessive ASM under asthmatic condition.
基金supported by the National Natural Science Foundation of China(22172084 and 21773133)the World-Class Discipline Program of Shandong Province,China。
文摘Direct alcohol fuel cells(DAFCs)are powered by the alcohol electro-oxidation reaction(AOR),where an electrocatalyst with an optimal electronic structure can accelerate the sluggish AOR.Interestingly,strain engineering in hetero-catalysis offers a promising route to boost their catalytic activity.Herein,we report on a class of monodispersed ultrathin twisty PdBi alloy nanowires(TNWs)assemblies with face-centered structures that drive AORs.These thin nanowire structures expose a large number of reactive sites.Strikingly,Pd_(6)Bi_(1)TNWs show an excellent current density of 2066,3047,and 1231 mA mg_(Pd)^(-1)for oxidation of ethanol,ethylene glycol,and glycerol,respectively.The“volcano-like”behaviors observed on PdBi TNWs for AORs indicate that the maximum catalytic mass activity is a well balance between active intermediates and blocking species at the interface.This study offers an effective and universal method to build novel nanocatalysts in various applications by rationally designing highly efficient catalysts with specific strain.
基金National Natural Science Foundation of China (No.30070786)
文摘Objective: To investigate the expression of cyclooxygenase-2 (COX-2) mRNA in drug-sensitive cell and drugresistant clones of ovarian cancer cell lines. Methods: RT-PCR and immunocytochemistry were used to investigate the expression of cyclooxygenase-2 in 3 clones drug-sensitive and 5 clones drug-resistant ovarian cancer cell. Results: Strong COX-2 mRNA expressions were detected in 3 clones of drug-sensitive cell and weak expressions were detected in 5 clones of drug-resistant cell. The protein expression of COX-2 in drug-sensitive cell was strongly positive reaction in immunocytochemistry stain and there was a weak positive reaction in 5 clones of drug-resistant cell. Conclusion: The expression of COX-2 mRNA in drug-sensitive cell strains is much higher than that in drugresistant strains of ovarian cancer cell lines, providing a basis of the chemoprevention for ovarian cancer.
基金supported by the grants from the National Natural Science Funds for Young Scholar(No.81100308)the National Science Foundation of China Advanced Program(No.NSFC 81030007,and No.NSFC81171558)
文摘Summary: The role of hepatic CD69+ natural killer (NK) cells in virus-induced severe liver injury and subsequent hepatic failure is not well defined. In this study, a mouse model of fulminant liver failure (FHF) induced by murine hepatitis virus strain 3 (MHV-3) was used to study the role of hepatic CD69+NK cells in the development of FHF. The CD69 expression in NK cells in the liver, spleen, bone marrow and peripheral blood was detected by using flow cytometry. The correlation between the CD69 level in hepatic NK cells and liver injury was studied. The functional marker (CD107a), and activating and inhibitory receptor (NKG2D and NKG2A) expressed on CD69+NK cells and CD69-NK cells were detected by using flow cytometry. Pro-inflammatory cytokines (IL-9, IFN-y and TNF-a) were also examined by using intracellular staining. After MHV-3 infection, the number of CD69+NK cells in the liver of BALB/cJ mice was increased markedly and peaked at 72 h post-infection. Similar changes were also observed in the spleen, bone marrow and peripheral blood. Meanwhile, the CD69 expression in hepatic NK cells was highly correlated with the serum level of ALT and AST. The expression of CD107a and NKG2D, as well as the production of TNF-a, IFN-7 and IL-9 in hepatic CD69+NK cells was all significantly up-regulated during 48-72 h post-infection. In contrast, the NKG2A expression was increased in hepatic CD69-NK cells but not in CD69+NK cells. These results suggested that hepatic CD69+NK cells play a pivotal role in the pathogenesis of FHF by enhancing degranulation and cytotoxic ability of NK cells and increasing the production of pro-inflammatory cytokines.
文摘The study and establishment of leukemia strains and leukemia cell lines have made great achievement in China.It has been extended from mice to rat model and related to explore human leukemia cell line and heterotransplantable tumor strains. The cellular types of leukemia strain have included Iymphocytic,tmyelocytic,ecythroleukmia and megakaryoblastic cell strain.
文摘A series of bioassays such as sister chromatid exchange frequencies ( SCE.), chromosomal aberration ( CA ), micronuclel rate (MN) and cell-cycle delay have been used to detecting the genotoxic effect of cigarette smoke condensate (CSC) on human diploid cell 2BS strain. The results suggested that a higher SCE, ( 17. 0/ cell) was observed In 2BS cells treated with CSC at 100 μg/ml, as compared with 6. 9/cell of the background (P<0. 001). CA rate was significantly increased from 4% to 36% In cells treated with 10 μg/ml CSC (P< 0.001). MN rate varied from 9 -26‰ In cells treated with CSC compared to that of control (6‰). Meanwhile, the cell-cycle of cells was markedly delayed by CSC. The survival rate of 2BS cells declined to 59. 6% for treatment with CSC at 200 μg/ ml. There was a dose-effect response In SCE., CA, MN rate. We proposed that active oxygen might responsible for genotoxiclty of CSC on cells.
文摘This study was conducted to explore the multiplication pattern of the recombinant strain Re-7 of avian influenza virus subtype H5 in Madin Darby Canine Kidney (MDCK) cells and to determine the optimal multiplicity of infection (MOI) and the optimal time for virus harvest. The recombinant strain Re-7 was inoculated at different MOIs into MDCK cells grown in serum-free medium in 100 L bioreactors for replication. Then, the hemagglutination(HA) titer, 50% tissue culture infectious dose (TCID50) and 50% embryo infectious dose (EID50) of culture medium were measured once every 12 h from 24 h after virus inoculation to determine the optimal MOI. After that, virus was inoculated at the optimal MOI determined above into MDCK cells for large-scale virus replication to determine the optimal time for virus harvest. The results showed that the optimal MOI was 10 2, and the optimal time for virus harvest was 60 h after inoculation. Under these conditions, the HA titer, TCIDso per 1 mL and EIDso per 0.1 mL were increased to 1:102 4, 10^7.33 and 10^6.83, respectively. This study provides relatively stable parameters for large-scale production of the recombinant strain Re-7 of avian influenza virus subtype H5.
文摘目的探究1型单纯疱疹病毒(herpes simplex virus type 1,HSV-1)突变株M6感染人支气管上皮细胞(16HBE细胞)后对巨噬细胞介导的免疫反应的影响。方法用HSV-1感染16HBE细胞分析培养液中细胞因子的变化;将巨噬细胞与被HSV-1毒株感染的16HBE细胞的上清液共培养并通过尾静脉回输至小鼠体内,分别在第1、3、7、28、56、90天对小鼠淋巴结细胞因子表达水平、脾脏T细胞比例变化、小鼠中和抗体表达水平以及特异性T细胞反应进行检测。结果16HBE细胞被HSV-1突变株感染后,上清液中募集和激活巨噬细胞相关的细胞因子均较高水平表达但略低于野毒株组;尾静脉回输实验后,突变株组小鼠淋巴结炎症因子、趋化因子和T细胞的比例随时间发生了不同的变化,并引起了弱于野毒株组的体液免疫和强于野毒株组的特异性T细胞免疫反应,且仅极少数与野毒株组具有显著性差异(P<0.05)。结论16HBE细胞被HSV-1突变株M6感染后能够释放募集和激活巨噬细胞的细胞因子,使巨噬细胞携带HSV-1突变株的特异性活化信息,激活了宿主的免疫系统,诱导了宿主的体液免疫和细胞免疫。