In waves dynamics, Generalized Kortewegde Vries (gKdV) equation and Sawada-Kotera equation (Ske) have been used to study nonlinear acoustic waves, an inharmonic lattice and Alfven waves in a collisionless plasma, and ...In waves dynamics, Generalized Kortewegde Vries (gKdV) equation and Sawada-Kotera equation (Ske) have been used to study nonlinear acoustic waves, an inharmonic lattice and Alfven waves in a collisionless plasma, and a lot of more important physical phenomena. In this paper, the simple equation method (SEM) is used to obtain new traveling wave solutions of gKdv and Ske. The physical properties of the obtained solutions are graphically illustrated using suitable parameters. The computational simplicity of the proposed method shows the robustness and efficiency of SEM.展开更多
In this work,we studied a(2+1)-dimensional Sawada-Kotera equation(SKE).This model depicts non-linear wave processes in shallow water,fluid dynamics,ion-acoustic waves in plasmas and other phe-nomena.A couple of well-e...In this work,we studied a(2+1)-dimensional Sawada-Kotera equation(SKE).This model depicts non-linear wave processes in shallow water,fluid dynamics,ion-acoustic waves in plasmas and other phe-nomena.A couple of well-established techniques,the Bäcklund transformation based on the modified Kudryashov method,and the Sardar-sub equation method are applied to obtain the soliton wave solution to the(2+1)-dimensional structure.To illustrate the behavior of the nonlinear model in an appealing fashion,a variety of travelling wave solutions are formed,such as contour,2D,and 3D plots.The pro-posed approaches are proved more convenient and dominant for getting analytical solutions and can also be implemented to a variety of physical models representing nonlinear wave phenomena.展开更多
文摘In waves dynamics, Generalized Kortewegde Vries (gKdV) equation and Sawada-Kotera equation (Ske) have been used to study nonlinear acoustic waves, an inharmonic lattice and Alfven waves in a collisionless plasma, and a lot of more important physical phenomena. In this paper, the simple equation method (SEM) is used to obtain new traveling wave solutions of gKdv and Ske. The physical properties of the obtained solutions are graphically illustrated using suitable parameters. The computational simplicity of the proposed method shows the robustness and efficiency of SEM.
文摘In this work,we studied a(2+1)-dimensional Sawada-Kotera equation(SKE).This model depicts non-linear wave processes in shallow water,fluid dynamics,ion-acoustic waves in plasmas and other phe-nomena.A couple of well-established techniques,the Bäcklund transformation based on the modified Kudryashov method,and the Sardar-sub equation method are applied to obtain the soliton wave solution to the(2+1)-dimensional structure.To illustrate the behavior of the nonlinear model in an appealing fashion,a variety of travelling wave solutions are formed,such as contour,2D,and 3D plots.The pro-posed approaches are proved more convenient and dominant for getting analytical solutions and can also be implemented to a variety of physical models representing nonlinear wave phenomena.