激光点云匹配是影响激光SLAM系统精度和效率的关键因素.传统激光SLAM算法无法区分场景结构,且在非结构化场景下由于特征提取不佳而出现性能退化.为此,提出一种联合CPD(coherent point drift)面向复杂场景的自适应激光SLAM算法CPD-LOAM....激光点云匹配是影响激光SLAM系统精度和效率的关键因素.传统激光SLAM算法无法区分场景结构,且在非结构化场景下由于特征提取不佳而出现性能退化.为此,提出一种联合CPD(coherent point drift)面向复杂场景的自适应激光SLAM算法CPD-LOAM.该算法提出一种基于预判和验证相结合的场景结构辨识方法,首先引入场景特征变量对场景结构进行初步判断,然后从几何特征角度通过表面曲率对其进行验证,增强对场景结构辨识的准确性.此外,在非结构化场景下添加CPD算法进行点云预配准,进而利用ICP算法进行再配准,解决该场景下的特征退化问题,从而提高点云配准的精度和效率.实验结果表明,提出的场景特征变量以及表面曲率可以根据设置的阈值有效地区分场景结构,在公开数据集KITTI上的验证结果显示,CPD-LOAM较LOAM算法定位误差降低了84.47%,相较于LeGO-LOAM与LIO-SAM算法定位精度也分别提升了55.88%和30.52%,且具有更高的效率和鲁棒性.展开更多
针对飞行载体的实时ORB-SLAM实现问题,提出一种在嵌入式系统实现的改进ORB(oriented FAST and rotated BRIEF)单目视觉里程计算法。算法首先对输入图像进行灰度化、高斯滤波预处理实现简化运算和图像去噪,考虑到算法移植及在嵌入式系统...针对飞行载体的实时ORB-SLAM实现问题,提出一种在嵌入式系统实现的改进ORB(oriented FAST and rotated BRIEF)单目视觉里程计算法。算法首先对输入图像进行灰度化、高斯滤波预处理实现简化运算和图像去噪,考虑到算法移植及在嵌入式系统实现,将图像预处理和ORB图像特征提取与匹配等功能封装为IP(intellectual property)核,布置到硬件系统中,提高特征提取与匹配的速度和正确率,保证位姿估计实时性。搭建ZYNQ嵌入式系统,开展对比实验,实验结果表明:改进后的算法特征点匹配率提高了3.78倍,特征提取与匹配的耗时缩短为原来的1/8,处理图像的帧率可以达到19 fps,满足实时性要求。展开更多
文摘激光点云匹配是影响激光SLAM系统精度和效率的关键因素.传统激光SLAM算法无法区分场景结构,且在非结构化场景下由于特征提取不佳而出现性能退化.为此,提出一种联合CPD(coherent point drift)面向复杂场景的自适应激光SLAM算法CPD-LOAM.该算法提出一种基于预判和验证相结合的场景结构辨识方法,首先引入场景特征变量对场景结构进行初步判断,然后从几何特征角度通过表面曲率对其进行验证,增强对场景结构辨识的准确性.此外,在非结构化场景下添加CPD算法进行点云预配准,进而利用ICP算法进行再配准,解决该场景下的特征退化问题,从而提高点云配准的精度和效率.实验结果表明,提出的场景特征变量以及表面曲率可以根据设置的阈值有效地区分场景结构,在公开数据集KITTI上的验证结果显示,CPD-LOAM较LOAM算法定位误差降低了84.47%,相较于LeGO-LOAM与LIO-SAM算法定位精度也分别提升了55.88%和30.52%,且具有更高的效率和鲁棒性.
文摘针对飞行载体的实时ORB-SLAM实现问题,提出一种在嵌入式系统实现的改进ORB(oriented FAST and rotated BRIEF)单目视觉里程计算法。算法首先对输入图像进行灰度化、高斯滤波预处理实现简化运算和图像去噪,考虑到算法移植及在嵌入式系统实现,将图像预处理和ORB图像特征提取与匹配等功能封装为IP(intellectual property)核,布置到硬件系统中,提高特征提取与匹配的速度和正确率,保证位姿估计实时性。搭建ZYNQ嵌入式系统,开展对比实验,实验结果表明:改进后的算法特征点匹配率提高了3.78倍,特征提取与匹配的耗时缩短为原来的1/8,处理图像的帧率可以达到19 fps,满足实时性要求。