期刊文献+
共找到1,149篇文章
< 1 2 58 >
每页显示 20 50 100
Research on simultaneous localization and mapping for AUV by an improved method:Variance reduction FastSLAM with simulated annealing 被引量:5
1
作者 Jiashan Cui Dongzhu Feng +1 位作者 Yunhui Li Qichen Tian 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期651-661,共11页
At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method o... At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system. 展开更多
关键词 Autonomous underwater vehicle(AUV) SONAR simultaneous localization and mapping(slam) Simulated annealing FASTslam
下载PDF
Robust Iterated Sigma Point FastSLAM Algorithm for Mobile Robot Simultaneous Localization and Mapping 被引量:2
2
作者 SONG Yu SONG Yongduan LI Qingling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期693-700,共8页
Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major d... Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major drawbacks: one is particle set degeneracy due to lack of observation information in proposal distribution design of the particle filter; the other is errors accumulation caused by linearization of the nonlinear robot motion model and the nonlinear environment observation model. For the purpose of overcoming the above problems, a new iterated sigma point FastSLAM (ISP-FastSLAM) algorithm is proposed. The main contribution of the algorithm lies in the utilization of iterated sigma point Kalman filter (ISPKF), which minimizes statistical linearization error through Gaussian-Newton iteration, to design an optimal proposal distribution of the particle filter and to estimate the environment landmarks. On the basis of Rao-Blackwellized particle filter, the proposed ISP-FastSLAM algorithm is comprised by two main parts: in the first part, an iterated sigma point particle filter (ISPPF) to localize the robot is proposed, in which the proposal distribution is accurately estimated by the ISPKF; in the second part, a set of ISPKFs is used to estimate the environment landmarks. The simulation test of the proposed ISP-FastSLAM algorithm compared with FastSLAM2.0 algorithm and Unscented FastSLAM algorithm is carried out, and the performances of the three algorithms are compared. The simulation and comparing results show that the proposed ISP-FastSLAM outperforms other two algorithms both in accuracy and in robustness. The proposed algorithm provides reference for the optimization research of FastSLAM algorithm. 展开更多
关键词 mobile robot simultaneous localization and mapping slam particle filter Kalman filter unscented transformation
下载PDF
A novel method for mobile robot simultaneous localization and mapping 被引量:4
3
作者 LI Mao-hai HONG Bing-rong +1 位作者 LUO Rong-hua WEI Zhen-hua 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第6期937-944,共8页
A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment.... A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter combined with unscented Kalman filter (UKF) for extending the path posterior by sampling new poses integrating the current observation. Landmark position estimation and update is implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which greatly reduces the particle depletion problem. Monocular CCD camera mounted on the robot tracks the 3D natural point landmarks structured with matching image feature pairs extracted through Scale Invariant Feature Transform (SIFT). The matching for multi-dimension SIFT features which are highly distinctive due to a special descriptor is implemented with a KD-Tree. Experiments on the robot Pioneer3 showed that our method is very precise and stable. 展开更多
关键词 Mobile robot Rao-Blackwellized particle filter (RBPF) Monocular vision simultaneous localization and mapping slam
下载PDF
Approach of simultaneous localization and mapping based on local maps for robot 被引量:6
4
作者 陈白帆 蔡自兴 胡德文 《Journal of Central South University of Technology》 EI 2006年第6期713-716,共4页
An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the ob... An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments. 展开更多
关键词 simultaneous localization and mapping extended Kalman filter local map
下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
5
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
下载PDF
Mobile Robot Hierarchical Simultaneous Localization and Mapping Using Monocular Vision 被引量:1
6
作者 厉茂海 洪炳熔 罗荣华 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期765-772,共8页
A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guar... A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guaranteed to be statistically independent. The global level is a topological graph whose arcs are labeled with the relative location between local maps. An estimation of these relative locations is maintained with local map alignment algorithm, and more accurate estimation is calculated through a global minimization procedure using the loop closure constraint. The local map is built with Rao-Blackwellised particle filter (RBPF), where the particle filter is used to extending the path posterior by sampling new poses. The landmark position estimation and update is implemented through extended Kalman filter (EKF). Monocular vision mounted on the robot tracks the 3D natural point landmarks, which are structured with matching scale invariant feature transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-tree in the time cost of O(lbN). Experiment results on Pioneer mobile robot in a real indoor environment show the superior performance of our proposed method. 展开更多
关键词 mobile robot HIERARCHICAL simultaneous localization and mapping (slam) Rao-Blackwellised particle filter (RBPF) MONOCULAR vision scale INVARIANT feature TRANSFORM
下载PDF
A survey: which features are required for dynamic visual simultaneous localization and mapping? 被引量:2
7
作者 Zewen Xu Zheng Rong Yihong Wu 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期183-198,共16页
In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the po... In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article. 展开更多
关键词 Dynamic simultaneous localization and mapping Multiple objects tracking Data association Object simultaneous localization and mapping Feature choices
下载PDF
Rapid State Augmentation for Compressed EKF-Based Simultaneous Localization and Mapping 被引量:1
8
作者 窦丽华 张海强 +1 位作者 陈杰 方浩 《Journal of Beijing Institute of Technology》 EI CAS 2009年第2期192-197,共6页
A new method for speeding up the state augment operations involved in the compressed extended Kalman filter-based simultaneous localization and mapping (CEKF-SLAM) algorithm was proposed. State augment usually requi... A new method for speeding up the state augment operations involved in the compressed extended Kalman filter-based simultaneous localization and mapping (CEKF-SLAM) algorithm was proposed. State augment usually requires a fully-updated state eovariance so as to append the information of newly observed landmarks, thus computational volume increases quadratically with the number of landmarks in the whole map. It was proved that state augment can also be achieved by augmenting just one auxiliary coefficient ma- trix. This method can yield identical estimation results as those using EKF-SLAM algorithm, and computa- tional amount grows only linearly with number of increased landmarks in the local map. The efficiency of this quick state augment for CEKF-SLAM algorithm has been validated by a sophisticated simulation project. 展开更多
关键词 simultaneous localization and mapping slam extended Kalman filter state augment compu- tational volume
下载PDF
Simultaneous Localization and Mapping System Based on Labels 被引量:1
9
作者 Tong Liu Panpan Liu +1 位作者 Songtian Shang Yi Yang 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期534-541,共8页
In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers ... In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers are utilized as labels. These labels are captured by two webcams,then the distances and angles between the labels and webcams are computed. Motion estimated from the two rear wheel encoders is adjusted by observing QR codes. Our system uses the extended Kalman filter( EKF) for the back-end state estimation. The number of deployed labels controls the state estimation dimension. The label-based EKF-SLAM system eliminates complicated processes,such as data association and loop closure detection in traditional feature-based visual SLAM systems. Our experiments include software-simulation and robot-platform test in a real environment. Results demonstrate that the system has the capability of correcting accumulated errors of dead reckoning and therefore has the advantage of superior precision. 展开更多
关键词 simultaneous localization and mapping slam extended Kalman filter (EKF) quick response (QR) codes artificial landmarks
下载PDF
Underwater Simultaneous Localization and Mapping Based on Forward-looking Sonar 被引量:1
10
作者 Tiedong Zhang Wenjing Zeng Lei Wan 《Journal of Marine Science and Application》 2011年第3期371-376,共6页
A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved associa... A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved association method based on an ant colony algorithm was introduced to estimate the positions. In order to improve the precision of the positions, the extended Kalman filter (EKF) was adopted. The presented algorithm was tested in a tank, and the maximum estimation error of SLAM gained was 0.25 m. The tests verify that this method can maintain better association efficiency and reduce navigatioJ~ error. 展开更多
关键词 simultaneous localization and mapping slam looking forward sonar extended Kalman filter (EKF)
下载PDF
Review of Simultaneous Localization and Mapping Technology in the Agricultural Environment
11
作者 Yaoguang Wei Bingqian Zhou +3 位作者 Jialong Zhang Ling Sun Dong An Jincun Liu 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期257-274,共18页
Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve th... Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve the autonomous navigation ability of mobile robots and their adaptability to different application environments and contribute to the realization of real-time obstacle avoidance and dynamic path planning.Moreover,the application of SLAM technology has expanded from industrial production,intelligent transportation,special operations and other fields to agricultural environments,such as autonomous navigation,independent weeding,three-dimen-sional(3D)mapping,and independent harvesting.This paper mainly introduces the principle,sys-tem framework,latest development and application of SLAM technology,especially in agricultural environments.Firstly,the system framework and theory of the SLAM algorithm are introduced,and the SLAM algorithm is described in detail according to different sensor types.Then,the devel-opment and application of SLAM in the agricultural environment are summarized from two aspects:environment map construction,and localization and navigation of agricultural robots.Finally,the challenges and future research directions of SLAM in the agricultural environment are discussed. 展开更多
关键词 simultaneous localization and mapping(slam) agricultural environment agricultural robots environment map construction localization and navigation
下载PDF
Mobile robot simultaneous localization and map building based on improved particle filter
12
作者 厉茂海 Hong Bingrong Wei Zhenhua 《High Technology Letters》 EI CAS 2006年第4期385-391,共7页
We present an investigation into the use of pan tilt zoom camera and sonar sensors for simuhaneous localization and mapping with artificial colored landmarks. An improved particle filter is applied to estimate a poste... We present an investigation into the use of pan tilt zoom camera and sonar sensors for simuhaneous localization and mapping with artificial colored landmarks. An improved particle filter is applied to estimate a posterior of the pose of the robot, in which each particle has associated it with an entire map. The distributions of landmarks are also represented by particle sets, where separate particles are used to represent the robot and the landmarks. Hough transform is used to extract line segments from sonar observations and build map simultaneously. The key advantage of our method is that the full posterior over robot poses and landmarks can be nonlinearly approximated at every point in time by particles. Especially the landmarks are affixed on the moving robots, which can reduce the impact of the depletion problem and the impoverishment problem produced by basic particle filter. Experimental results show that this approach has advantages over the basic particle filter and the extended Kalman filter. 展开更多
关键词 mobile robot particle filter simultaneous localization and mapping Hough transform extended Kalman filter
下载PDF
Localization and mapping in urban area based on 3D point cloud of autonomous vehicles 被引量:2
13
作者 王美玲 李玉 +2 位作者 杨毅 朱昊 刘彤 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期473-482,共10页
In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, ... In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, with the combination of iterative closest points (ICP) algorithm and Gaussian model for particles updating, the matching between the local map and the global map to quantify particles' importance weight. The crude estimation by using ICP algorithm can find the high probability area of autonomous vehicles' poses, which would decrease particle numbers, increase algorithm speed and restrain particles' impoverishment. The calculation of particles' importance weight based on matching of attribute between grid maps is simple and practicable. Experiments carried out with the autonomous vehicle platform validate the effectiveness of our approaches. 展开更多
关键词 simultaneous localization and mapping slam Rao-Blackwellized particle filter RB-PF) VoxelGrid filter ICP algorithm Gaussian model urban area
下载PDF
Dense Mapping From an Accurate Tracking SLAM 被引量:4
14
作者 Weijie Huang Guoshan Zhang Xiaowei Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第6期1565-1574,共10页
In recent years, reconstructing a sparse map from a simultaneous localization and mapping(SLAM) system on a conventional CPU has undergone remarkable progress. However,obtaining a dense map from the system often requi... In recent years, reconstructing a sparse map from a simultaneous localization and mapping(SLAM) system on a conventional CPU has undergone remarkable progress. However,obtaining a dense map from the system often requires a highperformance GPU to accelerate computation. This paper proposes a dense mapping approach which can remove outliers and obtain a clean 3D model using a CPU in real-time. The dense mapping approach processes keyframes and establishes data association by using multi-threading technology. The outliers are removed by changing detections of associated vertices between keyframes. The implicit surface data of inliers is represented by a truncated signed distance function and fused with an adaptive weight. A global hash table and a local hash table are used to store and retrieve surface data for data-reuse. Experiment results show that the proposed approach can precisely remove the outliers in scene and obtain a dense 3D map with a better visual effect in real-time. 展开更多
关键词 Adaptive weights data association dense mapping hash table simultaneous localization and mapping(slam)
下载PDF
Robust SLAM localization method based on improved variational Bayesian filtering 被引量:1
15
作者 Zhai Hongqi Wang Lihui +1 位作者 Cai Tijing Meng Qian 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期340-349,共10页
Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outli... Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outliers,or unknown and time-varying noise statistical characteristics,a robust SLAM method based on the improved variational Bayesian adaptive Kalman filtering(IVBAKF)is proposed.First,the measurement noise covariance is estimated using the variable Bayesian adaptive filtering algorithm.Then,the estimated covariance matrix is robustly processed through the weight function constructed in the form of a reweighted average.Finally,the system updates are iterated multiple times to further gradually correct the state estimation error.Furthermore,to observe features at different depths,a feature measurement model containing depth parameters is constructed.Experimental results show that when the measurement noise does not obey the Gaussian distribution and there are outliers in the measurement information,compared with the variational Bayesian adaptive SLAM method,the positioning accuracy of the proposed method is improved by 17.23%,20.46%,and 17.76%,which has better applicability and robustness to environmental disturbance. 展开更多
关键词 underwater navigation and positioning non-Gaussian distribution time-varying noise variational Bayesian method simultaneous localization and mapping(slam)
下载PDF
Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time
16
作者 Muhammad S.Alam Farhan B.Mohamed +2 位作者 Ali Selamat Faruk Ahmed AKM B.Hossain 《Intelligent Automation & Soft Computing》 2024年第3期417-436,共20页
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o... Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance. 展开更多
关键词 Camera pose estimation indoor camera localization real-time localization scene change detection simultaneous localization and mapping(slam)
下载PDF
多传感器融合的SLAM算法在林业智能化的应用与改进
17
作者 柳运昌 韩军宇 +2 位作者 冯灵霄 刘远航 董蕊芳 《东北林业大学学报》 CAS 北大核心 2025年第1期97-104,共8页
同步定位与建图(SLAM)算法可实现机器人在未知环境下的定位,并对周围环境构建增量式地图,是机器人实现自主导航的基础。针对单一传感器(全球导航卫星系统(GNSS)、激光、相机等)的SLAM算法在林区环境存在定位精度低、构建的地图一致性较... 同步定位与建图(SLAM)算法可实现机器人在未知环境下的定位,并对周围环境构建增量式地图,是机器人实现自主导航的基础。针对单一传感器(全球导航卫星系统(GNSS)、激光、相机等)的SLAM算法在林区环境存在定位精度低、构建的地图一致性较差的问题,提出了多传感器融合的SLAM算法在林业智能化的应用与改进。首先,联合使用激光雷达、单目相机、惯导对林区环境构建三维点云地图的同时对林业机器人进行实时定位;其次,提出以时间为约束的RS-T回环帧搜索法,进行候选回环帧搜索。结果表明:针对M2DGR数据集,RS-LVI-SAM算法与当前经典的SLAM算法对比,RS-LVI-SAM算法生成轨迹的均方根误差与标准差分别为0.09和0.04 m,定位精度最高;在林区场景中,RS-LVI-SAM算法建立的林区点云地图中侧柏的胸径与真实胸径的均方根误差与绝对平均误差分别为1.27、1.16 cm,建图效果最佳;生成的轨迹与真实轨迹的均方根误差与绝对平均误差分别为0.46、0.34 m,定位精度最高。因此,RS-LVI-SAM算法可以实现林区环境下的精准定位与林区点云地图构建,为机器人林区作业提供了技术支撑。 展开更多
关键词 林业机器人 同步定位与建图 传感器 激光雷达
下载PDF
基于IPSO-Gmapping算法的SLAM系统研究
18
作者 安赫 崔敏 +1 位作者 张鹏 刘鹏 《国外电子测量技术》 北大核心 2023年第3期110-115,共6页
针对传统Gmapping算法因粒子耗散导致定位精度不准确的现象,改进粒子群算法(IPSO)结合Gmapping算法(IPSO-Gmapping)被提出。通过引入相似度测量参数和新的学习因子,IPSO算法中粒子的全局开发能力得到提升,同时避免了陷入“局部最优值”... 针对传统Gmapping算法因粒子耗散导致定位精度不准确的现象,改进粒子群算法(IPSO)结合Gmapping算法(IPSO-Gmapping)被提出。通过引入相似度测量参数和新的学习因子,IPSO算法中粒子的全局开发能力得到提升,同时避免了陷入“局部最优值”的现象。其次将IPSO算法应用于传统的Gmapping中,使得粒子向高似然区域移动,改善了粒子的分布状态,这也使得IPSO-Gmapping算法表现出了极好的性能。分别使用公共数据集和实际场景进行验证,总体的平移旋转误差大幅度降低。通过实验测试表明,所提出的IPSO-Gmapping算法使用更少的粒子在位姿估计准确性及建图精确性上优于传统的Gmapping算法。 展开更多
关键词 Gmapping算法 粒子群最优化 同步定位与建图
下载PDF
基于GMapping算法与指纹地图构建的井下定位方法 被引量:3
19
作者 蒋磊 杨柳铭 +2 位作者 武方达 韩会杰 周雪 《工矿自动化》 北大核心 2017年第9期96-101,共6页
针对现有井下定位算法定位精度差和依赖信号源坐标的问题,提出一种基于GMapping算法与指纹地图构建的井下定位方法。将待定位的位置信号特征与信号分布图进行匹配,选择最优定位坐标,从而提高井下定位精度;通过与GMapping算法相结合,避... 针对现有井下定位算法定位精度差和依赖信号源坐标的问题,提出一种基于GMapping算法与指纹地图构建的井下定位方法。将待定位的位置信号特征与信号分布图进行匹配,选择最优定位坐标,从而提高井下定位精度;通过与GMapping算法相结合,避免了指纹地图构建过程维护成本高的问题,优化了算法的搜索与匹配效率。实际测试结果表明,该方法平均定位误差为57.7cm,可以满足井下定位要求。 展开更多
关键词 井下定位 即时定位与地图构建 Gmapping算法 指纹地图 信号分布图
下载PDF
基于深度学习的移动机器人语义SLAM方法研究 被引量:3
20
作者 王立鹏 张佳鹏 +2 位作者 张智 王学武 齐尧 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期306-313,共8页
为了给移动机器人提供细节丰富的三维语义地图,支撑机器人的精准定位,本文提出一种结合RGB-D信息与深度学习结果的机器人语义同步定位与建图方法。改进了ORB-SLAM2算法的框架,提出一种可以构建稠密点云地图的视觉同步定位与建图系统;将... 为了给移动机器人提供细节丰富的三维语义地图,支撑机器人的精准定位,本文提出一种结合RGB-D信息与深度学习结果的机器人语义同步定位与建图方法。改进了ORB-SLAM2算法的框架,提出一种可以构建稠密点云地图的视觉同步定位与建图系统;将深度学习的目标检测算法YOLO v5与视觉同步定位与建图系统融合,反映射为三维点云语义标签,结合点云分割完成数据关联和物体模型更新,并用八叉树的地图形式存储地图信息;基于移动机器人平台,在实验室环境下开展移动机器人三维语义同步定位与建图实验,实验结果验证了本文语义同步定位与建图算法的语义信息映射、点云分割与语义信息匹配以及三维语义地图构建的有效性。 展开更多
关键词 移动机器人 深度学习 视觉同步定位与建图 目标识别 点云分割 数据关联 八叉树 语义地图
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部