为更全面地提取局部放电信号的特征值信息,提高识别率,将局部放电统计特征参数和矩特征参数相结合,提取出高维的特征值。从不同的角度出发,结合两种不同的方法对局放特征进行提取。同时在流形学习非监督的基础上引入了监督信息,从而保...为更全面地提取局部放电信号的特征值信息,提高识别率,将局部放电统计特征参数和矩特征参数相结合,提取出高维的特征值。从不同的角度出发,结合两种不同的方法对局放特征进行提取。同时在流形学习非监督的基础上引入了监督信息,从而保证高维到低维的映射在保留流形某些结构,同时也可进一步分离不同类别的流形。利用基于监督的局部线性嵌入(Supervised Locally Linear Embedding,SLLE)对局部放电特征值进行降维优化处理,提取出具有较高分类能力的最优特征值,利用电力电缆附件的4种典型缺陷进行实验对比,结果表明文中方法较好地提取出最优特征值,且能得到更准确的识别结果。展开更多
为了提高人脸识别算法的识别率,提出了一种Gabor小波与监督局部线性嵌入(Supervised Locally Linear Embedding,SLLE)相结合的人脸特征提取算法。针对SLLE不能有效消除图像信息中冗余的高阶相关性,算法首先采用Gabor小波对人脸图像进行...为了提高人脸识别算法的识别率,提出了一种Gabor小波与监督局部线性嵌入(Supervised Locally Linear Embedding,SLLE)相结合的人脸特征提取算法。针对SLLE不能有效消除图像信息中冗余的高阶相关性,算法首先采用Gabor小波对人脸图像进行多方向、多分辨率滤波,提取图像在不同空间频率上的特征;然后采用监督的局部线性嵌入算法对该Gabor特征进行维数约简。在ORL和YALE人脸库上的实验显示,就算法有效提高了人脸识别的识别率。展开更多
文摘为更全面地提取局部放电信号的特征值信息,提高识别率,将局部放电统计特征参数和矩特征参数相结合,提取出高维的特征值。从不同的角度出发,结合两种不同的方法对局放特征进行提取。同时在流形学习非监督的基础上引入了监督信息,从而保证高维到低维的映射在保留流形某些结构,同时也可进一步分离不同类别的流形。利用基于监督的局部线性嵌入(Supervised Locally Linear Embedding,SLLE)对局部放电特征值进行降维优化处理,提取出具有较高分类能力的最优特征值,利用电力电缆附件的4种典型缺陷进行实验对比,结果表明文中方法较好地提取出最优特征值,且能得到更准确的识别结果。
文摘为了提高人脸识别算法的识别率,提出了一种Gabor小波与监督局部线性嵌入(Supervised Locally Linear Embedding,SLLE)相结合的人脸特征提取算法。针对SLLE不能有效消除图像信息中冗余的高阶相关性,算法首先采用Gabor小波对人脸图像进行多方向、多分辨率滤波,提取图像在不同空间频率上的特征;然后采用监督的局部线性嵌入算法对该Gabor特征进行维数约简。在ORL和YALE人脸库上的实验显示,就算法有效提高了人脸识别的识别率。