The alloy with nominal composition Sm_2(Fe0.94Ti0.06)17 is prepared by arc-melting, hydrogenation and nitrogenation processes. The Sm_2(Fe0.94Ti0.06)17 alloy has a single phase of Sm_3(Fe, Ti)29 with the Nd_3(Fe, Ti)...The alloy with nominal composition Sm_2(Fe0.94Ti0.06)17 is prepared by arc-melting, hydrogenation and nitrogenation processes. The Sm_2(Fe0.94Ti0.06)17 alloy has a single phase of Sm_3(Fe, Ti)29 with the Nd_3(Fe, Ti)29-type structure. The corresponding hydride phase with the same phase structure of the parent alloy was formed after a hydrogen decrepitation (HD) process at 300℃. The hydrogenation at 800℃ mainly shows a HDDR process. The HD and nitrogenation at 500℃ result in increasing the Curie temperature of the alloy by 72℃ and by 158℃ due to lattice expansions, respectively. The anisotropic and isotropic Sm_3(Fe. Ti)29N_y magnets are obtained after HD, HDDR and the consequent nitrogenation, respectively. The optimum magnetic properties of Sm_3(Fe, Ti)29N_y powders achieved in the above two processes are: (i) B_r=0;82 T, _iH_c=4.48 kA/cm. (BH)_max=54.3 kJ/m^3, (ii) B_r=0.68 T, _iH_c=8.14 kA/cm, (BH)max=66.4 kJ/m^3.展开更多
Structure, magnetic properties, and thermal stability of ternary Sm1-xTmxCo5 compounds were studied via X-ray diffraction(XRD), thermal magnetic analysis(TMA), and magnetic measurements. XRD results show that all ...Structure, magnetic properties, and thermal stability of ternary Sm1-xTmxCo5 compounds were studied via X-ray diffraction(XRD), thermal magnetic analysis(TMA), and magnetic measurements. XRD results show that all the compounds have a main phase of hexagonal CaCu5-type crystal structure with small amount of impurity phases; increasing Tm content is associated with contraction of the hexagonal unit cell in the direction of the c axis and expansion of the a and b parameters. TMA results indicate that the Curie temperature(TC) of Sm1-xTmxCo5 compounds gets higher with the increase in Tm content.Magnetic measurements show that both the magnetic anisotropy field(HA) and the magnetization at an applied field of 7 T(M7 T) decrease with the increase of Tm content. However, the thermal stability of both the HAand M7 Tof all the Tm doped compounds is remarkably improved compared with that of the pure SmCo5 compound, leading to the result that both the M7 Tand HAof Sm0.8Tm0.2Co5 .2are higher than those of SmCo5 compound at 473 K, which indicates the good potential of Tm doped compound in the practical applications at elevated temperature.展开更多
基金National Natural Science FOundation of China!59571014National Natural Science FOundation of China!59725103National Natur
文摘The alloy with nominal composition Sm_2(Fe0.94Ti0.06)17 is prepared by arc-melting, hydrogenation and nitrogenation processes. The Sm_2(Fe0.94Ti0.06)17 alloy has a single phase of Sm_3(Fe, Ti)29 with the Nd_3(Fe, Ti)29-type structure. The corresponding hydride phase with the same phase structure of the parent alloy was formed after a hydrogen decrepitation (HD) process at 300℃. The hydrogenation at 800℃ mainly shows a HDDR process. The HD and nitrogenation at 500℃ result in increasing the Curie temperature of the alloy by 72℃ and by 158℃ due to lattice expansions, respectively. The anisotropic and isotropic Sm_3(Fe. Ti)29N_y magnets are obtained after HD, HDDR and the consequent nitrogenation, respectively. The optimum magnetic properties of Sm_3(Fe, Ti)29N_y powders achieved in the above two processes are: (i) B_r=0;82 T, _iH_c=4.48 kA/cm. (BH)_max=54.3 kJ/m^3, (ii) B_r=0.68 T, _iH_c=8.14 kA/cm, (BH)max=66.4 kJ/m^3.
基金financially supported by the State Key Development Program of Basic Research of China (No. 2010CB934600)State Key Laboratory of Advanced Metals and Materials (No. 2011-ZD02)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (No. 009000543113507)
文摘Structure, magnetic properties, and thermal stability of ternary Sm1-xTmxCo5 compounds were studied via X-ray diffraction(XRD), thermal magnetic analysis(TMA), and magnetic measurements. XRD results show that all the compounds have a main phase of hexagonal CaCu5-type crystal structure with small amount of impurity phases; increasing Tm content is associated with contraction of the hexagonal unit cell in the direction of the c axis and expansion of the a and b parameters. TMA results indicate that the Curie temperature(TC) of Sm1-xTmxCo5 compounds gets higher with the increase in Tm content.Magnetic measurements show that both the magnetic anisotropy field(HA) and the magnetization at an applied field of 7 T(M7 T) decrease with the increase of Tm content. However, the thermal stability of both the HAand M7 Tof all the Tm doped compounds is remarkably improved compared with that of the pure SmCo5 compound, leading to the result that both the M7 Tand HAof Sm0.8Tm0.2Co5 .2are higher than those of SmCo5 compound at 473 K, which indicates the good potential of Tm doped compound in the practical applications at elevated temperature.