Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts...Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.展开更多
BACKGROUND Glioma is one of the most common intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event of tumor cell migration.The actin dynamics-rel...BACKGROUND Glioma is one of the most common intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event of tumor cell migration.The actin dynamics-related protein scinderin(SCIN)has been reported to be closely related to tumor cell migration and invasion in several cancers.AIM To investigate the role and mechanism of SCIN in glioma.METHODS The expression and clinical significance of SCIN in glioma were analyzed based on public databases.SCIN expression was examined using real-time quantitative polymerase chain reaction and Western blotting.Gene silencing was performed using short hairpin RNA transfection.Cell viability,migration,and invasion were assessed using cell counting kit 8 assay,wound healing,and Matrigel invasion assays,respectively.F-actin cytoskeleton organization was assessed using F-actin staining.RESULTS SCIN expression was significantly elevated in glioma,and high levels of SCIN were associated with advanced tumor grade and wild-type isocitrate dehydrogenase.Furthermore,SCIN-deficient cells exhibited decreased proliferation,migration,and invasion in U87 and U251 cells.Moreover,knockdown of SCIN inhibited the RhoA/focal adhesion kinase(FAK)signaling to promote F-actin depolymerization in U87 and U251 cells.CONCLUSION SCIN modulates the actin cytoskeleton via activating RhoA/FAK signaling,thereby promoting the migration and invasion of glioma cells.This study identified the cancer-promoting effect of SCIN and provided a potential therapeutic target for the treatment of glioma.展开更多
Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear f...Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear flow encountered by vascular endothelial cells.However,the investigations about the transient response of intracellular actin networks under these intense external mechanical forces,their intrinsic mechanisms,and potential implications are very limited.Here,we observe that when cells are subject to the shear flow,an actin ring structure could be rapidly assembled at the periphery of the nucleus.To gain insights into the mechanism underlying this perinuclear actin ring assembly,we develop a computational model of actin dynamics.We demonstrate that this perinuclear actin ring assembly is triggered by the depolymerization of cortical actin,Arp2/3-dependent actin filament polymerization,and myosin-mediated actin network contraction.Furthermore,we discover that the compressive stress generated by the perinuclear actin ring could lead to a reduction in the nuclear spreading area,an increase in the nuclear height,and a decrease in the nuclear volume.The present model thus explains the mechanism of the perinuclear actin ring assembly under external mechanical forces and suggests that the spontaneous contraction of this actin structure can significantly impact nuclear morphology.展开更多
Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties ...Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties of NSCLC proteins is a potential alternative for developing treatment strategies. Towards this, 35 downregulated actin cytoskeletal proteins on NSCLC prognosis and treatment were studied by examining their protein-protein interactions, gene ontology enrichment terms, and signaling pathways. Using PubMed, various proteins in NSCLC were identified. The protein-protein interactions and functional associations of these proteins were examined using the STRING database. The focal adhesion signaling pathway was selected from all available KEGG and Wiki pathways because of its role in regulating gene expression, facilitating cell movement and reproduction, and significantly impacting NSCLC. The protein-protein interaction network of the 35 downregulated actin cytoskeleton proteins revealed that ACTG1, ACTR2, ACTR3, ANXA2, ARPC4, FLNA, TLN1, CALD1, MYL6, MYH9, MYH10, TPM1, TPM3, TPM4, PFN1, IQGAP1, MSN, and ZXY exhibited the highest number of interactions. Whereas HSPB1, CTNNA1, KRT17, KRT7, FLNB, SEPT2, and TUBA1B displayed medium interactions, while UTRN, TUBA1B, and DUSP23 had relatively fewer interactions. It was discovered that focal adhesions are critical in connecting membrane receptors with the actin cytoskeleton. In addition, protein kinases, phosphatases, and adapter proteins were identified as key signaling molecules in this process, greatly influencing cell shape, motility, and gene expression. Our analysis shows that the focal adhesion pathway plays a crucial role in NSCLC and is essential for developing effective treatment strategies and improving patient outcomes.展开更多
Actin cytoskeleton plays crucial roles in various cellular functions.Extracellular matrix(ECM)can modulate cell morphology by remodeling the internal cytoskeleton.To define how geometry of ECM regulates the organizati...Actin cytoskeleton plays crucial roles in various cellular functions.Extracellular matrix(ECM)can modulate cell morphology by remodeling the internal cytoskeleton.To define how geometry of ECM regulates the organization of actin cytoskeleton,we plated individual NIH 3T3 cells on micropatterned substrates with distinct shapes and sizes.It was found that the stress fibers could form along the nonadhesive edges of T-shaped pattern,but were absent from the opening edge of V-shaped pattern,indicating that the organization of actin cytoskeleton was dependent on the mechanical environment.Furthermore,a secondary actin ring was observed on 50μm circular pattern while did not appear on 30μm and 40μm pattern,showing a size-dependent organization of actin cytoskeleton.Finally,osteoblasts,MDCK and A549 cells exhibited distinct organization of actin cytoskeleton on T-shaped pattern,suggesting a cell-type specificity in arrangement of actin cytoskeleton.Together,our findings brought novel insight into the organization of actin cytoskeleton on micropatterned environments.展开更多
Studies have found that the phosphatase actin regulatory factor 1 expression can be related to stroke,but it remains unclear whether changes in phosphatase actin regulatory factor 1 expression also play a role in trau...Studies have found that the phosphatase actin regulatory factor 1 expression can be related to stroke,but it remains unclear whether changes in phosphatase actin regulatory factor 1 expression also play a role in traumatic brain injury.In this study we found that,in a mouse model of traumatic brain injury induced by controlled cortical impact,phosphatase actin regulatory factor 1 expression is increased in endothelial cells,neurons,astrocytes,and microglia.When we overexpressed phosphatase actin regulatory factor 1 by injection an adeno-associated virus vector into the contused area in the traumatic brain injury mice,the water content of the brain tissue increased.However,when phosphatase actin regulatory factor 1 was knocked down,the water content decreased.We also found that inhibiting phosphatase actin regulatory factor 1 expression regulated the nuclear factor kappa B signaling pathway,decreased blood-brain barrier permeability,reduced aquaporin 4 and intercellular adhesion molecule 1 expression,inhibited neuroinflammation,and neuronal apoptosis,thereby improving neurological function.The findings from this study indicate that phosphatase actin regulatory factor 1 may be a potential therapeutic target for traumatic brain injury.展开更多
Biomineralization is a biological process of synthesizing inorganic minerals within organisms.It has been found that intracellular proteins are involved in the room temperature synthesis process of anatase Ti O2in liv...Biomineralization is a biological process of synthesizing inorganic minerals within organisms.It has been found that intracellular proteins are involved in the room temperature synthesis process of anatase Ti O2in living mussels.Here,we used intracellular actin to synthesize hematite by biomineralization.Biomineralized hematite has a nano spindle structure with a particle size of approximately 150 nm.The microstructure indicates that the prepared hematite is a mesocrystals composed of ordered arrangement and assembly of primary nanoparticles.In addition,hematite mesocrystals exhibit good lithium storage performance as electrode materials for lithium batteries.The discharge specific capacity of the battery remained at 560.7 m Ah·g^(-1)after 130 cycles at a current density of 200 m A·g^(-1).This work expands the synthesis methods of hematite by biomineralization,and provides a new strategy for preparing inorganic materials by intracellular proteins.展开更多
Background Actinic keratosis is the most prevalent premalignant skin disorder in the white population. Current guidelines provide no clear recommendations about preferred treatments. Methods The parameters;effectivene...Background Actinic keratosis is the most prevalent premalignant skin disorder in the white population. Current guidelines provide no clear recommendations about preferred treatments. Methods The parameters;effectiveness, treatment duration, recurrence, side effects and cost of treatment were investigated for three frequently used topical therapies which were then compared with a most recent developed topical therapy. Published clinical data obtained from the literature was used to compare these parameters for 5-fluorouracil, imiquimod and diclofenac and relate them with the newly developed Curaderm. Results A wide variation in the concentrations of the active anti-keratotic ingredients, application frequency, duration of treatment, recurrence rates and cost of treatment exist between the different topical therapies. The efficacy rates and side effects were less variable. Overall, Curaderm is the most suitable treatment for actinic keratosis. Clinical evidence is presented illustrating the effects of Curaderm on field-directed treatments and solitary treatments of actinic keratoses. Conclusions Current medical guidelines do not provide clear recommendations on which treatment approach for actinic keratosis is preferred. Direct head-to-head comparison between treatments with emphasis on efficacy, safety, treatment duration, compliance, convenience, cosmetic outcome, patient acceptance and cost should be available to the patient, the practising physician, healthcare system and should assist in therapeutic treatment guidelines and policymaking. Given the very favourable profiles of these parameters with Curaderm when compared with other home-based treatments, it should be considered that Curaderm is first-in-line.展开更多
基金supported by the National Natural Science Foundation of China(82171506 and 31872778)Discipline Innovative Engineering Plan(111 Program)of China(B13036)+3 种基金Key Laboratory Grant from Hunan Province(2016TP1006)Department of Science and Technology of Hunan Province(2021DK2001,Innovative Team Program 2019RS1010)Innovation-Driven Team Project from Central South University(2020CX016)Hunan Hundred Talents Program for Young Outstanding Scientists。
文摘Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.
文摘BACKGROUND Glioma is one of the most common intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event of tumor cell migration.The actin dynamics-related protein scinderin(SCIN)has been reported to be closely related to tumor cell migration and invasion in several cancers.AIM To investigate the role and mechanism of SCIN in glioma.METHODS The expression and clinical significance of SCIN in glioma were analyzed based on public databases.SCIN expression was examined using real-time quantitative polymerase chain reaction and Western blotting.Gene silencing was performed using short hairpin RNA transfection.Cell viability,migration,and invasion were assessed using cell counting kit 8 assay,wound healing,and Matrigel invasion assays,respectively.F-actin cytoskeleton organization was assessed using F-actin staining.RESULTS SCIN expression was significantly elevated in glioma,and high levels of SCIN were associated with advanced tumor grade and wild-type isocitrate dehydrogenase.Furthermore,SCIN-deficient cells exhibited decreased proliferation,migration,and invasion in U87 and U251 cells.Moreover,knockdown of SCIN inhibited the RhoA/focal adhesion kinase(FAK)signaling to promote F-actin depolymerization in U87 and U251 cells.CONCLUSION SCIN modulates the actin cytoskeleton via activating RhoA/FAK signaling,thereby promoting the migration and invasion of glioma cells.This study identified the cancer-promoting effect of SCIN and provided a potential therapeutic target for the treatment of glioma.
基金Project supported by the National Natural Science Foundation of China (Nos. 12025207 and 11872357)the Fundamental Research Funds for the Central Universities。
文摘Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear flow encountered by vascular endothelial cells.However,the investigations about the transient response of intracellular actin networks under these intense external mechanical forces,their intrinsic mechanisms,and potential implications are very limited.Here,we observe that when cells are subject to the shear flow,an actin ring structure could be rapidly assembled at the periphery of the nucleus.To gain insights into the mechanism underlying this perinuclear actin ring assembly,we develop a computational model of actin dynamics.We demonstrate that this perinuclear actin ring assembly is triggered by the depolymerization of cortical actin,Arp2/3-dependent actin filament polymerization,and myosin-mediated actin network contraction.Furthermore,we discover that the compressive stress generated by the perinuclear actin ring could lead to a reduction in the nuclear spreading area,an increase in the nuclear height,and a decrease in the nuclear volume.The present model thus explains the mechanism of the perinuclear actin ring assembly under external mechanical forces and suggests that the spontaneous contraction of this actin structure can significantly impact nuclear morphology.
文摘Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties of NSCLC proteins is a potential alternative for developing treatment strategies. Towards this, 35 downregulated actin cytoskeletal proteins on NSCLC prognosis and treatment were studied by examining their protein-protein interactions, gene ontology enrichment terms, and signaling pathways. Using PubMed, various proteins in NSCLC were identified. The protein-protein interactions and functional associations of these proteins were examined using the STRING database. The focal adhesion signaling pathway was selected from all available KEGG and Wiki pathways because of its role in regulating gene expression, facilitating cell movement and reproduction, and significantly impacting NSCLC. The protein-protein interaction network of the 35 downregulated actin cytoskeleton proteins revealed that ACTG1, ACTR2, ACTR3, ANXA2, ARPC4, FLNA, TLN1, CALD1, MYL6, MYH9, MYH10, TPM1, TPM3, TPM4, PFN1, IQGAP1, MSN, and ZXY exhibited the highest number of interactions. Whereas HSPB1, CTNNA1, KRT17, KRT7, FLNB, SEPT2, and TUBA1B displayed medium interactions, while UTRN, TUBA1B, and DUSP23 had relatively fewer interactions. It was discovered that focal adhesions are critical in connecting membrane receptors with the actin cytoskeleton. In addition, protein kinases, phosphatases, and adapter proteins were identified as key signaling molecules in this process, greatly influencing cell shape, motility, and gene expression. Our analysis shows that the focal adhesion pathway plays a crucial role in NSCLC and is essential for developing effective treatment strategies and improving patient outcomes.
基金This work was supported by the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030009)the National Key Research and Development Program of China(2022YFC3400600)National Natural Science Foundation of China(12174208,32227802,11874231,31801134 and 31870843)+2 种基金Tianjin Natural Science Foundation(20JCYBJC01010)China Postdoctoral Science Foundation(2020M680032)Fundamental Research Funds for the Central Universities(2122021337 and 2122021405).
文摘Actin cytoskeleton plays crucial roles in various cellular functions.Extracellular matrix(ECM)can modulate cell morphology by remodeling the internal cytoskeleton.To define how geometry of ECM regulates the organization of actin cytoskeleton,we plated individual NIH 3T3 cells on micropatterned substrates with distinct shapes and sizes.It was found that the stress fibers could form along the nonadhesive edges of T-shaped pattern,but were absent from the opening edge of V-shaped pattern,indicating that the organization of actin cytoskeleton was dependent on the mechanical environment.Furthermore,a secondary actin ring was observed on 50μm circular pattern while did not appear on 30μm and 40μm pattern,showing a size-dependent organization of actin cytoskeleton.Finally,osteoblasts,MDCK and A549 cells exhibited distinct organization of actin cytoskeleton on T-shaped pattern,suggesting a cell-type specificity in arrangement of actin cytoskeleton.Together,our findings brought novel insight into the organization of actin cytoskeleton on micropatterned environments.
基金supported by the National Natural Science Foundation of China,Nos.81501048(to JD),81801236(to ZMX),81974189(to HLT)Shanghai 6th People’s Hospital Research Fund,No.ynlc201808(to JD).
文摘Studies have found that the phosphatase actin regulatory factor 1 expression can be related to stroke,but it remains unclear whether changes in phosphatase actin regulatory factor 1 expression also play a role in traumatic brain injury.In this study we found that,in a mouse model of traumatic brain injury induced by controlled cortical impact,phosphatase actin regulatory factor 1 expression is increased in endothelial cells,neurons,astrocytes,and microglia.When we overexpressed phosphatase actin regulatory factor 1 by injection an adeno-associated virus vector into the contused area in the traumatic brain injury mice,the water content of the brain tissue increased.However,when phosphatase actin regulatory factor 1 was knocked down,the water content decreased.We also found that inhibiting phosphatase actin regulatory factor 1 expression regulated the nuclear factor kappa B signaling pathway,decreased blood-brain barrier permeability,reduced aquaporin 4 and intercellular adhesion molecule 1 expression,inhibited neuroinflammation,and neuronal apoptosis,thereby improving neurological function.The findings from this study indicate that phosphatase actin regulatory factor 1 may be a potential therapeutic target for traumatic brain injury.
基金Funded by the National Natural Science Foundation of China(Nos.52003212 and 51832003)。
文摘Biomineralization is a biological process of synthesizing inorganic minerals within organisms.It has been found that intracellular proteins are involved in the room temperature synthesis process of anatase Ti O2in living mussels.Here,we used intracellular actin to synthesize hematite by biomineralization.Biomineralized hematite has a nano spindle structure with a particle size of approximately 150 nm.The microstructure indicates that the prepared hematite is a mesocrystals composed of ordered arrangement and assembly of primary nanoparticles.In addition,hematite mesocrystals exhibit good lithium storage performance as electrode materials for lithium batteries.The discharge specific capacity of the battery remained at 560.7 m Ah·g^(-1)after 130 cycles at a current density of 200 m A·g^(-1).This work expands the synthesis methods of hematite by biomineralization,and provides a new strategy for preparing inorganic materials by intracellular proteins.
文摘Background Actinic keratosis is the most prevalent premalignant skin disorder in the white population. Current guidelines provide no clear recommendations about preferred treatments. Methods The parameters;effectiveness, treatment duration, recurrence, side effects and cost of treatment were investigated for three frequently used topical therapies which were then compared with a most recent developed topical therapy. Published clinical data obtained from the literature was used to compare these parameters for 5-fluorouracil, imiquimod and diclofenac and relate them with the newly developed Curaderm. Results A wide variation in the concentrations of the active anti-keratotic ingredients, application frequency, duration of treatment, recurrence rates and cost of treatment exist between the different topical therapies. The efficacy rates and side effects were less variable. Overall, Curaderm is the most suitable treatment for actinic keratosis. Clinical evidence is presented illustrating the effects of Curaderm on field-directed treatments and solitary treatments of actinic keratoses. Conclusions Current medical guidelines do not provide clear recommendations on which treatment approach for actinic keratosis is preferred. Direct head-to-head comparison between treatments with emphasis on efficacy, safety, treatment duration, compliance, convenience, cosmetic outcome, patient acceptance and cost should be available to the patient, the practising physician, healthcare system and should assist in therapeutic treatment guidelines and policymaking. Given the very favourable profiles of these parameters with Curaderm when compared with other home-based treatments, it should be considered that Curaderm is first-in-line.