By developing a GDMOD model to estimate the environmental externalities associated with electricity generation, this project provides a detailed analysis of the damages and costs caused by different pollutants at vary...By developing a GDMOD model to estimate the environmental externalities associated with electricity generation, this project provides a detailed analysis of the damages and costs caused by different pollutants at varying distances from the Mawan Electricity Plant in Shenzhen, China. The major findings of this study can be summarized that (1) environmental damages caused by electricity production are large and are mainly imposed on regions far away from the electricity plant; (2) air pollution is the most significant contributor to the total damages, and SO_2, NOx, and particulate matter are the three major pollutants with highest damages; (3) the damages caused per unit of particulate, NOx, and SO_2 emissions are much higher than pollution treatment and prevention costs. The research results of this project showed that China needs to have a more effective levy system on SO_2, and a more manageable electricity tariff mechanism to internalize the environmental externalities. The results have also implications for pollution control strategies, compensation schemes as well as emission trading arrangements.展开更多
On March 20,China hiked f uel prices by the biggest margin in nearly three years after a surge in the cost of global crude,the government and state media said.The rise is the second this year and
This paper examines the impact of power transmission network topology change on locational marginal price(LMP) in real-time power markets. We consider the case where the false status of circuit breakers(CBs) that bypa...This paper examines the impact of power transmission network topology change on locational marginal price(LMP) in real-time power markets. We consider the case where the false status of circuit breakers(CBs) that bypass topology error processing can generate an incorrect power system network topology, subsequently distorting the results of the state estimation and economic dispatch.The main goal of this paper is to assess the economic impact of this misconfigured network topology on realtime LMP in an entire power system with network congestion. To this end, we start with our prior result, a simple and analytical congestion price equation, which can be applied to any single line congestion scenario. This equation can be extended to better understand the degree to which the LMP at any bus changes due to any line status error. Furthermore, it enables a rigorous analysis of the relationship between the change in LMP at any bus with respect to any line error and various physical/economical grid conditions such as the bidding prices for marginal generators and the locations of the congested/erroneous lines. Numerical examples on the impact analysis of this topology error are illustrated in IEEE 14-bus and 118-bus systems.展开更多
Power system resilience procurement costs in N-k contingencies have gained more prominence as number of extreme events continues to increase.A chain rule is presented in this paper for extracting resilience procuremen...Power system resilience procurement costs in N-k contingencies have gained more prominence as number of extreme events continues to increase.A chain rule is presented in this paper for extracting resilience procurement costs from a fully decomposed locational marginal price(LMP)model.First,power transfer distribution factor(PTDF)matrices with AC power flow(i.e.,AC-PTDF)are determined.AC-PTDF and AC-LODF(line outage distribution factor)equations are derived for N-k contingencies and a fully decomposed LMP model is developed where generation and transmission security components are established for specific contingencies.Furthermore,resilience procurement costs can be measured at different buses for the proposed security components.Impact of N-k contingencies on resilience procurement costs at specific buses can be determined as proposed security components will gain more insight for resilience procurement in power systems.The modified IEEE 6-bus and 118-bus systems are adopted to verify effectiveness of the proposed resilience procurement method.展开更多
Decarbonisation of power systems is essential for realising carbon neutrality,in which the economic cost caused by carbon needs to be qualified.Based on the formulation of locational marginal price(LMP),this paper pro...Decarbonisation of power systems is essential for realising carbon neutrality,in which the economic cost caused by carbon needs to be qualified.Based on the formulation of locational marginal price(LMP),this paper proposes a locational marginal electricity-carbon price(EC-LMP)model to reveal carbon-related costs caused by power consumers.A carbon-priceintegrated optimal power flow(C-OPF)is then developed to maximise economic efficiency of the power system considering the costs of electricity and carbon.Case studies are presented to demonstrate the new formulation and results demonstrate the efficacy of the EC-LMP-based C-OPF on decarbonisation and economy.展开更多
文摘By developing a GDMOD model to estimate the environmental externalities associated with electricity generation, this project provides a detailed analysis of the damages and costs caused by different pollutants at varying distances from the Mawan Electricity Plant in Shenzhen, China. The major findings of this study can be summarized that (1) environmental damages caused by electricity production are large and are mainly imposed on regions far away from the electricity plant; (2) air pollution is the most significant contributor to the total damages, and SO_2, NOx, and particulate matter are the three major pollutants with highest damages; (3) the damages caused per unit of particulate, NOx, and SO_2 emissions are much higher than pollution treatment and prevention costs. The research results of this project showed that China needs to have a more effective levy system on SO_2, and a more manageable electricity tariff mechanism to internalize the environmental externalities. The results have also implications for pollution control strategies, compensation schemes as well as emission trading arrangements.
文摘On March 20,China hiked f uel prices by the biggest margin in nearly three years after a surge in the cost of global crude,the government and state media said.The rise is the second this year and
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(No.2015R1C1A1A01051890)part by the National Science Foundation DGE-1303378
文摘This paper examines the impact of power transmission network topology change on locational marginal price(LMP) in real-time power markets. We consider the case where the false status of circuit breakers(CBs) that bypass topology error processing can generate an incorrect power system network topology, subsequently distorting the results of the state estimation and economic dispatch.The main goal of this paper is to assess the economic impact of this misconfigured network topology on realtime LMP in an entire power system with network congestion. To this end, we start with our prior result, a simple and analytical congestion price equation, which can be applied to any single line congestion scenario. This equation can be extended to better understand the degree to which the LMP at any bus changes due to any line status error. Furthermore, it enables a rigorous analysis of the relationship between the change in LMP at any bus with respect to any line error and various physical/economical grid conditions such as the bidding prices for marginal generators and the locations of the congested/erroneous lines. Numerical examples on the impact analysis of this topology error are illustrated in IEEE 14-bus and 118-bus systems.
基金supported by the National Natural Science Foundation of China(52007032)Basic Research Program of Jiangsu Province(BK20200385)National Key R&D Program of China(2022YFB2703500).
文摘Power system resilience procurement costs in N-k contingencies have gained more prominence as number of extreme events continues to increase.A chain rule is presented in this paper for extracting resilience procurement costs from a fully decomposed locational marginal price(LMP)model.First,power transfer distribution factor(PTDF)matrices with AC power flow(i.e.,AC-PTDF)are determined.AC-PTDF and AC-LODF(line outage distribution factor)equations are derived for N-k contingencies and a fully decomposed LMP model is developed where generation and transmission security components are established for specific contingencies.Furthermore,resilience procurement costs can be measured at different buses for the proposed security components.Impact of N-k contingencies on resilience procurement costs at specific buses can be determined as proposed security components will gain more insight for resilience procurement in power systems.The modified IEEE 6-bus and 118-bus systems are adopted to verify effectiveness of the proposed resilience procurement method.
基金supported by the National Natural Science Foundation of China(U2166211).
文摘Decarbonisation of power systems is essential for realising carbon neutrality,in which the economic cost caused by carbon needs to be qualified.Based on the formulation of locational marginal price(LMP),this paper proposes a locational marginal electricity-carbon price(EC-LMP)model to reveal carbon-related costs caused by power consumers.A carbon-priceintegrated optimal power flow(C-OPF)is then developed to maximise economic efficiency of the power system considering the costs of electricity and carbon.Case studies are presented to demonstrate the new formulation and results demonstrate the efficacy of the EC-LMP-based C-OPF on decarbonisation and economy.