大数据对存储系统的可扩展性、性能和成本等方面提出了更高的要求。瓦记录(Shingled Magnetic Recording,SMR)硬盘由于存储密度高、价格便宜,正逐步被广泛应用于大数据存储系统。但是,SMR硬盘的随机写性能较差,与快速的基于闪存的固态硬...大数据对存储系统的可扩展性、性能和成本等方面提出了更高的要求。瓦记录(Shingled Magnetic Recording,SMR)硬盘由于存储密度高、价格便宜,正逐步被广泛应用于大数据存储系统。但是,SMR硬盘的随机写性能较差,与快速的基于闪存的固态硬盘(Solid State Drive,SSD)一起构成混合存储时可以显著提升性能。同时,基于写优化的日志结构合并(Log-Structured Merge,LSM)树的键值存储已被广泛应用于许多NoSQL系统,如BigTable,Cassandra和HBase等。因此,如何基于新型的SSD-SMR混合存储构建出高性能的LSM树键值存储系统是一个具有很大研究价值的问题。首先建立基于SSD-SMR混合存储的LSM树键值系统的性能模型,然后针对SSD和SMR的硬件特征以及LSM树键值存储的软件特点,设计了一套面向SSD-SMR混合存储进行性能优化的LSM树键值存储系统,并基于LevelDB实现了该系统。在仅仅使用0.4%~2%空间的SSD的情况下,所提方法可以使SSD-SMR混合存储方案比普通磁盘方案的随机写性能提高20%,随机读性能提高5倍。展开更多
Hot data identification is crucial for many applications though few investigations have examined the subject. All existing studies focus almost exclusively on frequency. However, effectively identifying hot data requi...Hot data identification is crucial for many applications though few investigations have examined the subject. All existing studies focus almost exclusively on frequency. However, effectively identifying hot data requires equally considering recency and frequency. Moreover, previous studies make hot data decisions at the data block level. Such a fine-grained decision fits particularly well for flash-based storage because its random access achieves performance comparable with its sequential access. However, hard disk drives (HDDs) have a significant performance disparity between sequential and random access. Therefore, unlike flash-based storage, exploiting asymmetric HDD access performance requires making a coarse-grained decision. This paper proposes a novel hot data identification scheme adopting multiple bloom filters to efficiently characterize recency as well as frequency. Consequently, it not only consumes 50% less memory and up to 58% less computational overhead, but also lowers false identification rates up to 65% compared with a state-of-the-art scheme. Moreover, we apply the scheme to a next generation HDD technology, i.e., Shingled Magnetic Recording (SMR), to verify its effectiveness. For this, we design a new hot data identification based SMR drive with a coarse-grained decision. The experiments demonstrate the importance and benefits of accurate hot data identification, thereby improving the proposed SMR drive performance by up to 42%.展开更多
文摘大数据对存储系统的可扩展性、性能和成本等方面提出了更高的要求。瓦记录(Shingled Magnetic Recording,SMR)硬盘由于存储密度高、价格便宜,正逐步被广泛应用于大数据存储系统。但是,SMR硬盘的随机写性能较差,与快速的基于闪存的固态硬盘(Solid State Drive,SSD)一起构成混合存储时可以显著提升性能。同时,基于写优化的日志结构合并(Log-Structured Merge,LSM)树的键值存储已被广泛应用于许多NoSQL系统,如BigTable,Cassandra和HBase等。因此,如何基于新型的SSD-SMR混合存储构建出高性能的LSM树键值存储系统是一个具有很大研究价值的问题。首先建立基于SSD-SMR混合存储的LSM树键值系统的性能模型,然后针对SSD和SMR的硬件特征以及LSM树键值存储的软件特点,设计了一套面向SSD-SMR混合存储进行性能优化的LSM树键值存储系统,并基于LevelDB实现了该系统。在仅仅使用0.4%~2%空间的SSD的情况下,所提方法可以使SSD-SMR混合存储方案比普通磁盘方案的随机写性能提高20%,随机读性能提高5倍。
基金This work was supported by Hankuk University of Foreign Studies Research Fund of Korea, and also partially supported by the National Science Foundation (NSF) Awards of USA under Grant Nos. 1053533, 1439622, 1217569, 1305237, and 1421913. Acknowledgment We would like to thank David Schwaderer (Samsung Semiconductor Inc., USA) for his valuable comments and proofreading.
文摘Hot data identification is crucial for many applications though few investigations have examined the subject. All existing studies focus almost exclusively on frequency. However, effectively identifying hot data requires equally considering recency and frequency. Moreover, previous studies make hot data decisions at the data block level. Such a fine-grained decision fits particularly well for flash-based storage because its random access achieves performance comparable with its sequential access. However, hard disk drives (HDDs) have a significant performance disparity between sequential and random access. Therefore, unlike flash-based storage, exploiting asymmetric HDD access performance requires making a coarse-grained decision. This paper proposes a novel hot data identification scheme adopting multiple bloom filters to efficiently characterize recency as well as frequency. Consequently, it not only consumes 50% less memory and up to 58% less computational overhead, but also lowers false identification rates up to 65% compared with a state-of-the-art scheme. Moreover, we apply the scheme to a next generation HDD technology, i.e., Shingled Magnetic Recording (SMR), to verify its effectiveness. For this, we design a new hot data identification based SMR drive with a coarse-grained decision. The experiments demonstrate the importance and benefits of accurate hot data identification, thereby improving the proposed SMR drive performance by up to 42%.