[Objectives]The genetic diversity and population genetic structure of 107 inbred lines of maize in Yunnan were analyzed,in order to provide technical support for maize germplasm innovation,genetic improvement of germp...[Objectives]The genetic diversity and population genetic structure of 107 inbred lines of maize in Yunnan were analyzed,in order to provide technical support for maize germplasm innovation,genetic improvement of germplasm resources,variety management,and lay a solid foundation for exploring genes related to fine traits in the future.[Methods]The 107 maize inbred lines generalized in Yunnan were selected,and 45 backbone inbred lines commonly used in China were used as reference for heterotic group classification.On Axiom Maize 56K SNP Array platform,maize SNP chips(56K)were used to scan the whole maize genome,and the NJ-tree model of Treebest was used to construct a phylogenetic tree.Principal component analysis(PCA)was conducted by GCTA(genome-wide complex trait analysis)to reveal the genetic diversity and population genetic structure.[Results]In the 107 Yunnan local inbred lines,5533 uniformly distributed high-quality SNP marker sites were finally detected.Based on the analysis of these SNP marker sites,Nei s gene diversity index(H)of 107 maize germplasm genes was 0.2981-0.5000 with an average value being 0.4832,and polymorphism information content(PIC)values were 0.2536-0.3750 with an average value being 0.3662.The minimum allele frequency value was 0.5000-0.8178 with an average value being 0.5744.The analysis of population genetic structure showed that when K=6,the maximum value of△K was the maximum,which meant that the inbred lines used in this study could be divided into six groups.They were Tangsi Pingtou blood relationship group,PB blood relationship group,335 female blood relationship group,Zi 330 and the Lüda Honggu blood relationship group,unknown group 1 and unknown group 2.No inbred lines were divided into other heterotic groups.Among them,37 inbred lines from the 2 unknown groups could not be classified into the same group as the 10 known heterotic groups in China.The results of principal component analysis showed that the 107 maize inbred lines generalized in Yunnan could be clearly distinguished from the backbone maize inbred lines commonly used in China.Most of the maize inbred lines in Yunnan were concentrated near the reference backbone inbred lines.But some Yunnan inbred lines were far away from the reference inbred lines commonly used in China.[Conclusions]The maize germplasm resources in Yunnan area were rich in genetic diversity,including multiple heterotic groups,and there was a rich genetic basis of breeding parents.They could be clearly distinguished from the backbone inbred lines commonly used in China,and some of them had a long genetic distance from the backbone inbred lines.The resources which have good application potential can be used to create new heterotic groups.展开更多
了解固原鸡的保种效果,为更好地保护和利用固原鸡这一重要地方种质资源提供参考和帮助。从固原鸡群体中随机采集公鸡、母鸡各30只血样,采用“京芯一号”55K芯片技术对固原鸡进行保种分析。结果显示,固原鸡群体有效含量为8.9,多态标记比...了解固原鸡的保种效果,为更好地保护和利用固原鸡这一重要地方种质资源提供参考和帮助。从固原鸡群体中随机采集公鸡、母鸡各30只血样,采用“京芯一号”55K芯片技术对固原鸡进行保种分析。结果显示,固原鸡群体有效含量为8.9,多态标记比例为0.828,期望杂合度为0.360,观测杂合度为0.359,说明该群体遗传变异较小,整齐度较高;G矩阵表明该群体中存在近亲交配的趋势;在检测到的1431个长纯合片段(runs of homozygosity,ROH)中,ROH长度在50~100 Mb的个体数量最多,占比达36.67%,该群体平均近交系数为0.11。结合基因组亲缘关系分析和聚类分析结果,现有30只公鸡样本可以划分为10个家系,其中25只母鸡分别划入不同家系,另外5只母鸡和所检测的公鸡亲缘关系系数均小于0.1,亲缘关系都比较远,因此,将它们归入了“其他”分类中。综上所述,该保种固原鸡群体遗传变异较小,选育程度较高,为降低群体的近交增量,后期的保种过程中需考虑亲缘关系再进行配种。展开更多
为了研究大型肉牛比利时蓝牛生长发育的遗传规律,筛选优异基因,试验基于Illumina Bovine SNP 50K芯片数据,采用PLINK软件对270头比利时蓝牛常染色体数据进行基因组长纯合片段(ROH)检测并基于选择信号分析,通过核苷酸多态性检测取前5%的...为了研究大型肉牛比利时蓝牛生长发育的遗传规律,筛选优异基因,试验基于Illumina Bovine SNP 50K芯片数据,采用PLINK软件对270头比利时蓝牛常染色体数据进行基因组长纯合片段(ROH)检测并基于选择信号分析,通过核苷酸多态性检测取前5%的单核苷酸多态性(single nucleotide polymorphism,SNP)位点,基于牛参考基因组(ARS-UCD1.2)对结果SNPs进行基因注释,对候选基因进行GO功能注释与KEGG信号通路富集分析,并计算染色体上ROH长度占基因组总长度的比例(FROH)。结果表明:在全部270个个体数据中共检测出1893个ROH片段,平均长度13.2311 Mb,平均FROH为0.0392;得到与生长发育相性状相关的基因有NEB、TET2、NEK11、NCKAP1、MYH15、EIF4A2、bta-miR-1248-1、DCAF8、PRORP、DOCK3、SYT15、MYEF2、ZDHHC13,与公牛生育能力相关的基因有CFAP61、DNAL1、BAG1。说明通过对比利时蓝牛生长发育性状相关分子标记的解析可以为比利时蓝牛遗传改良提供理论指导。展开更多
旨在探究山东济宁青山羊保种群体的遗传多样性、亲缘关系及家系结构。本研究利用Illumina 70 K Goat SNP芯片对40只成年济宁青山羊全基因组范围内的SNP进行检测,利用Plink软件、GCTA工具和R语言,对济宁青山羊的遗传结构、亲缘关系和近...旨在探究山东济宁青山羊保种群体的遗传多样性、亲缘关系及家系结构。本研究利用Illumina 70 K Goat SNP芯片对40只成年济宁青山羊全基因组范围内的SNP进行检测,利用Plink软件、GCTA工具和R语言,对济宁青山羊的遗传结构、亲缘关系和近交系数进行分析,以期揭示个体之间的亲缘关系。结果共得到67088个SNPs,个体的基因型检出率达到了98%以上;通过Plink(V1.90)软件质控,过滤掉一个样本,剩余的SNPs有57991个,其中85.5%的SNPs具有多态性;各位点平均有效等位基因数为1.697,平均多态信息含量(PIC)为0.283,最小等位基因频率(MAF)为0.293,群体平均观察杂合度(Ho)为0.409,平均期望杂合度(He)为0.418;济宁青山羊保种群体的平均状态同源(IBS)遗传距离为0.3334。23只种公羊的平均IBS遗传距离为0.3303,IBS遗传距离和G矩阵结果均表明部分种羊之间有亲缘关系。在40只个体中共检测到347个长纯合片段(ROH),基于ROH值计算的群体平均近交系数为0.0479,近交程度低,群体遗传多样性丰富。基于IBS距离矩阵、G矩阵,结合邻接系统发育树,以公羊间分子亲缘系数0.1为标准进行聚类,将23只公羊划分为14个家系。综上,济宁青山羊保种群体遗传多样性较丰富,近交程度低,保种效果良好,建议后续工作持续关注各家系数量,确保家系结构维持平衡。展开更多
该研究分析了“科尔沁肉牛”群体的遗传多样性和种群结构,以期为“科尔沁肉牛”新品种培育和后续遗传改良提供遗传背景支撑。试验使用Illumina Bovine HD BeadChip芯片对“科尔沁肉牛”群体(n=437)、华西牛群体(n=55)和美系西门塔尔牛群...该研究分析了“科尔沁肉牛”群体的遗传多样性和种群结构,以期为“科尔沁肉牛”新品种培育和后续遗传改良提供遗传背景支撑。试验使用Illumina Bovine HD BeadChip芯片对“科尔沁肉牛”群体(n=437)、华西牛群体(n=55)和美系西门塔尔牛群体(n=25)进行基因分型,对其遗传多样性参数和群体结构进行统计分析,并对比三个群体的连锁不平衡衰减情况。研究结果表明:(1)“科尔沁肉牛”群体内中高频(MAF≥0.3)标记的数量多于华西牛和美系西门塔尔牛群体,且“科尔沁肉牛”群体遗传多样性在三个群体内最高。(2)“科尔沁肉牛”群体和美系西门塔尔牛群体具有相似的遗传组成,与华西牛群体的遗传距离相对较远。从群体结构来看“科尔沁肉牛”群体内部分个体与美系西门塔尔牛群体遗传分化较差。(3)“科尔沁肉牛”群体远端标记的连锁能力在三个群体中处于比较低的情况。从整体来看,“科尔沁肉牛”与华西牛及美系牛之间存在明显的遗传距离。尽管科尔沁牛的选育工作正在持续进行,但相对于美系西门塔尔牛和华西牛,其选择强度仍有提高的空间。展开更多
【目的】对107个云南玉米自交系进行遗传多样性和群体遗传结构分析,为云南省玉米种质创新、遗传改良、品种管理等提供理论依据,也为今后深入挖掘优良性状相关基因打下基础。【方法】以云南当地推广的107个优良玉米自交系为供试材料,以4...【目的】对107个云南玉米自交系进行遗传多样性和群体遗传结构分析,为云南省玉米种质创新、遗传改良、品种管理等提供理论依据,也为今后深入挖掘优良性状相关基因打下基础。【方法】以云南当地推广的107个优良玉米自交系为供试材料,以45个我国常用玉米骨干自交系作为杂种优势群划分的参照,在Axiom~?Maize56K SNP Array平台上利用玉米SNP芯片(56K)进行玉米全基因组扫描,并使用Treebest的NJ-tree模型构建系统发育进化树,利用GCTA(全基因组复杂性状分析)工具进行主成分分析,揭示其遗传多样性与群体遗传结构。【结果】从107个云南玉米自交系中检出5533个均匀分布的高质量SNP分子标记位点。基于这些SNP分子标记位点分析结果可知,107个云南玉米自交系的Nei’s基因多样性指数(H)为0.2981~0.5000,平均为0.4832;多态信息含量(PIC)为0.2536~0.3750,平均为0.3662;最小等位基因频率为0.5000~0.8178,平均为0.5744。群体遗传结构分析结果显示,K=6时△K最大即供试自交系可划分为六大类群,分别为塘四平头血缘类群、PB血缘类群、335母本血缘类群、自330和旅大红骨血缘类群及2个未知类群,无自交系划分到其他杂交优势群,其中,2个未知类群共37个云南玉米自交系,未能与我国目前已知的10个杂种优势群归在一类。主成分分析结果显示,107个云南玉米自交系与45个我国常用玉米骨干自交系能明显区分,大部分云南玉米自交系集中在我国常用玉米骨干自交系附近,但少数云南玉米自交系与我国常用玉米骨干自交系距离较远。【结论】云南地区玉米种质资源遗传多样性较丰富,含有多个杂种优势群,育种亲本遗传基础丰富,与我国常用玉米骨干自交系能明显区分,且部分与骨干自交系遗传距离较远,可创建新的杂交优势群,具有良好的应用潜力。展开更多
基金Study on Maize Variety Management Based on DUS Test and SNP Molecular Fingerprint.
文摘[Objectives]The genetic diversity and population genetic structure of 107 inbred lines of maize in Yunnan were analyzed,in order to provide technical support for maize germplasm innovation,genetic improvement of germplasm resources,variety management,and lay a solid foundation for exploring genes related to fine traits in the future.[Methods]The 107 maize inbred lines generalized in Yunnan were selected,and 45 backbone inbred lines commonly used in China were used as reference for heterotic group classification.On Axiom Maize 56K SNP Array platform,maize SNP chips(56K)were used to scan the whole maize genome,and the NJ-tree model of Treebest was used to construct a phylogenetic tree.Principal component analysis(PCA)was conducted by GCTA(genome-wide complex trait analysis)to reveal the genetic diversity and population genetic structure.[Results]In the 107 Yunnan local inbred lines,5533 uniformly distributed high-quality SNP marker sites were finally detected.Based on the analysis of these SNP marker sites,Nei s gene diversity index(H)of 107 maize germplasm genes was 0.2981-0.5000 with an average value being 0.4832,and polymorphism information content(PIC)values were 0.2536-0.3750 with an average value being 0.3662.The minimum allele frequency value was 0.5000-0.8178 with an average value being 0.5744.The analysis of population genetic structure showed that when K=6,the maximum value of△K was the maximum,which meant that the inbred lines used in this study could be divided into six groups.They were Tangsi Pingtou blood relationship group,PB blood relationship group,335 female blood relationship group,Zi 330 and the Lüda Honggu blood relationship group,unknown group 1 and unknown group 2.No inbred lines were divided into other heterotic groups.Among them,37 inbred lines from the 2 unknown groups could not be classified into the same group as the 10 known heterotic groups in China.The results of principal component analysis showed that the 107 maize inbred lines generalized in Yunnan could be clearly distinguished from the backbone maize inbred lines commonly used in China.Most of the maize inbred lines in Yunnan were concentrated near the reference backbone inbred lines.But some Yunnan inbred lines were far away from the reference inbred lines commonly used in China.[Conclusions]The maize germplasm resources in Yunnan area were rich in genetic diversity,including multiple heterotic groups,and there was a rich genetic basis of breeding parents.They could be clearly distinguished from the backbone inbred lines commonly used in China,and some of them had a long genetic distance from the backbone inbred lines.The resources which have good application potential can be used to create new heterotic groups.
文摘了解固原鸡的保种效果,为更好地保护和利用固原鸡这一重要地方种质资源提供参考和帮助。从固原鸡群体中随机采集公鸡、母鸡各30只血样,采用“京芯一号”55K芯片技术对固原鸡进行保种分析。结果显示,固原鸡群体有效含量为8.9,多态标记比例为0.828,期望杂合度为0.360,观测杂合度为0.359,说明该群体遗传变异较小,整齐度较高;G矩阵表明该群体中存在近亲交配的趋势;在检测到的1431个长纯合片段(runs of homozygosity,ROH)中,ROH长度在50~100 Mb的个体数量最多,占比达36.67%,该群体平均近交系数为0.11。结合基因组亲缘关系分析和聚类分析结果,现有30只公鸡样本可以划分为10个家系,其中25只母鸡分别划入不同家系,另外5只母鸡和所检测的公鸡亲缘关系系数均小于0.1,亲缘关系都比较远,因此,将它们归入了“其他”分类中。综上所述,该保种固原鸡群体遗传变异较小,选育程度较高,为降低群体的近交增量,后期的保种过程中需考虑亲缘关系再进行配种。
文摘旨在研究丫杈猪保种群体的遗传多样性、亲缘关系和家系结构。本研究采用“中芯一号”芯片检测了166头丫杈种猪的单核苷酸多态性(single nucleotide polymorphism,SNP);利用Plink软件计算观察杂合度、期望杂合度、多态信息含量、最小等位基因频率,分析丫杈猪群体的遗传多样性;采用Plink软件构建状态同源(identity by state,IBS)距离矩阵和分析连续性纯合片段(runs of homozygosity,ROH),采用GCTA软件构建G矩阵,分析丫杈猪群体的亲缘关系;采用Mega X软件构建群体进化树,分析丫杈猪群体的家系结构。结果显示,166头丫杈猪共检测到45211个SNPs位点,通过质量控制的SNP位点有36243个;有效等位基因数为1.529,多态性信息含量为0.254,多态性标记比例为0.875,最小等位基因频率为0.233;期望杂合度为0.329,观察杂合度为0.344;状态同源平均遗传距离为0.2595,状态同源距离矩阵和G矩阵结果均表明大部分丫杈猪呈中等程度的亲缘关系;ROH片段共有3226个,其中40.96%的长度在0~100 Mb之间,基于ROH的平均近交系数为0.069;群体进化树结果表明,丫杈猪公猪被分为8个血缘,数量与传统系谱记录的相同,但血缘间有个体差异。综上所述,丫杈猪保种群的有效群体含量偏低,遗传多样性中等偏低,近交程度不严重,可引入或创建新血缘,扩大有效群体含量,提高群体遗传多样性。
文摘旨在探究山东济宁青山羊保种群体的遗传多样性、亲缘关系及家系结构。本研究利用Illumina 70 K Goat SNP芯片对40只成年济宁青山羊全基因组范围内的SNP进行检测,利用Plink软件、GCTA工具和R语言,对济宁青山羊的遗传结构、亲缘关系和近交系数进行分析,以期揭示个体之间的亲缘关系。结果共得到67088个SNPs,个体的基因型检出率达到了98%以上;通过Plink(V1.90)软件质控,过滤掉一个样本,剩余的SNPs有57991个,其中85.5%的SNPs具有多态性;各位点平均有效等位基因数为1.697,平均多态信息含量(PIC)为0.283,最小等位基因频率(MAF)为0.293,群体平均观察杂合度(Ho)为0.409,平均期望杂合度(He)为0.418;济宁青山羊保种群体的平均状态同源(IBS)遗传距离为0.3334。23只种公羊的平均IBS遗传距离为0.3303,IBS遗传距离和G矩阵结果均表明部分种羊之间有亲缘关系。在40只个体中共检测到347个长纯合片段(ROH),基于ROH值计算的群体平均近交系数为0.0479,近交程度低,群体遗传多样性丰富。基于IBS距离矩阵、G矩阵,结合邻接系统发育树,以公羊间分子亲缘系数0.1为标准进行聚类,将23只公羊划分为14个家系。综上,济宁青山羊保种群体遗传多样性较丰富,近交程度低,保种效果良好,建议后续工作持续关注各家系数量,确保家系结构维持平衡。
文摘该研究分析了“科尔沁肉牛”群体的遗传多样性和种群结构,以期为“科尔沁肉牛”新品种培育和后续遗传改良提供遗传背景支撑。试验使用Illumina Bovine HD BeadChip芯片对“科尔沁肉牛”群体(n=437)、华西牛群体(n=55)和美系西门塔尔牛群体(n=25)进行基因分型,对其遗传多样性参数和群体结构进行统计分析,并对比三个群体的连锁不平衡衰减情况。研究结果表明:(1)“科尔沁肉牛”群体内中高频(MAF≥0.3)标记的数量多于华西牛和美系西门塔尔牛群体,且“科尔沁肉牛”群体遗传多样性在三个群体内最高。(2)“科尔沁肉牛”群体和美系西门塔尔牛群体具有相似的遗传组成,与华西牛群体的遗传距离相对较远。从群体结构来看“科尔沁肉牛”群体内部分个体与美系西门塔尔牛群体遗传分化较差。(3)“科尔沁肉牛”群体远端标记的连锁能力在三个群体中处于比较低的情况。从整体来看,“科尔沁肉牛”与华西牛及美系牛之间存在明显的遗传距离。尽管科尔沁牛的选育工作正在持续进行,但相对于美系西门塔尔牛和华西牛,其选择强度仍有提高的空间。
文摘东极黑猪是在我国东北部发现的一种新黑猪群体,试验旨在了解东极黑猪群体结构和遗传多样性,以期更好地保护和利用东极黑猪遗传资源。通过50k SNP芯片研究426头东极黑猪进行遗传多样性、亲缘关系和家系结构,同时加入20头大白猪及20头民猪数据开展主成分分析(Principal component analysis,PCA)。结果表明,东极黑猪57466个SNPs中有47389个SNPs通过质检;PCA结果显示,3个群体分别聚类,东极黑猪与另外两个猪种区分明显;东极黑猪群体中部分个体遗传关系较近,状态同源(Identity by state,IBS)遗传距离为0.0977~0.3589,平均值为0.2752;连续性纯合片段(Runs of homozygosity,ROH)分析发现该群体平均ROH为317.3 Mb,主要分布在200~300 Mb,群体平均近交系数(FROH)为0.133,说明存在近交情况。根据基因组亲缘关系和聚类分析结果,可将东极黑猪群体分为15个家系。综合分析表明,东极黑猪群体遗传多样性丰富,品种独特,但存在近交,建议引入新血统以防遗传多样性丢失。
文摘【目的】对107个云南玉米自交系进行遗传多样性和群体遗传结构分析,为云南省玉米种质创新、遗传改良、品种管理等提供理论依据,也为今后深入挖掘优良性状相关基因打下基础。【方法】以云南当地推广的107个优良玉米自交系为供试材料,以45个我国常用玉米骨干自交系作为杂种优势群划分的参照,在Axiom~?Maize56K SNP Array平台上利用玉米SNP芯片(56K)进行玉米全基因组扫描,并使用Treebest的NJ-tree模型构建系统发育进化树,利用GCTA(全基因组复杂性状分析)工具进行主成分分析,揭示其遗传多样性与群体遗传结构。【结果】从107个云南玉米自交系中检出5533个均匀分布的高质量SNP分子标记位点。基于这些SNP分子标记位点分析结果可知,107个云南玉米自交系的Nei’s基因多样性指数(H)为0.2981~0.5000,平均为0.4832;多态信息含量(PIC)为0.2536~0.3750,平均为0.3662;最小等位基因频率为0.5000~0.8178,平均为0.5744。群体遗传结构分析结果显示,K=6时△K最大即供试自交系可划分为六大类群,分别为塘四平头血缘类群、PB血缘类群、335母本血缘类群、自330和旅大红骨血缘类群及2个未知类群,无自交系划分到其他杂交优势群,其中,2个未知类群共37个云南玉米自交系,未能与我国目前已知的10个杂种优势群归在一类。主成分分析结果显示,107个云南玉米自交系与45个我国常用玉米骨干自交系能明显区分,大部分云南玉米自交系集中在我国常用玉米骨干自交系附近,但少数云南玉米自交系与我国常用玉米骨干自交系距离较远。【结论】云南地区玉米种质资源遗传多样性较丰富,含有多个杂种优势群,育种亲本遗传基础丰富,与我国常用玉米骨干自交系能明显区分,且部分与骨干自交系遗传距离较远,可创建新的杂交优势群,具有良好的应用潜力。