Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg...Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.展开更多
CMOS image sensors produced by the existing CMOS manufacturing process usually have difficulty achieving complete charge transfer owing to the introduction of potential barriers or Si/SiO_(2)interface state traps in t...CMOS image sensors produced by the existing CMOS manufacturing process usually have difficulty achieving complete charge transfer owing to the introduction of potential barriers or Si/SiO_(2)interface state traps in the charge transfer path,which reduces the charge transfer efficiency and image quality.Until now,scholars have only considered mechanisms that limit charge transfer from the perspectives of potential barriers and spill back effect under high illumination condition.However,the existing models have thus far ignored the charge transfer limitation due to Si/SiO_(2)interface state traps in the transfer gate channel,particularly under low illumination.Therefore,this paper proposes,for the first time,an analytical model for quantifying the incomplete charge transfer caused by Si/SiO_(2)interface state traps in the transfer gate channel under low illumination.This model can predict the variation rules of the number of untransferred charges and charge transfer efficiency when the trap energy level follows Gaussian distribution,exponential distribution and measured distribution.The model was verified with technology computer-aided design simulations,and the results showed that the simulation results exhibit the consistency with the proposed model.展开更多
The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their correspon...The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.展开更多
Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,batter...Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate.展开更多
Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. batte...Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs.展开更多
电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了...电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了一种自适应时间常数的分频控制策略,时间常数根据混合储能系统(hybridenergy storage system, HESS)的SOC而动态调整以改变功率分配。首先,通过分析储能SOC与虚拟惯性的关系,并考虑储能充放电极限问题,研究兼顾SOC、电压变化率以及电压幅值的自适应虚拟惯性控制策略,提高系统惯性。然后,建立控制系统的小信号模型,分析虚拟惯性系数对系统的影响。最后,基于Matlab/Simulink搭建直流配电网仿真模型,验证了所提控制策略能合理分配HESS功率,提高超级电容器利用率,改善直流电压与功率稳定性。展开更多
提高基于模块化多电平换流器(modular multilevel converter,MMC)的分布式储能系统(distributed energy storage systems,DESS)的能量利用率,解决储能子模块(energy sub-module,ESM)荷电状态(state of charge,SOC)均衡问题至关重要。针...提高基于模块化多电平换流器(modular multilevel converter,MMC)的分布式储能系统(distributed energy storage systems,DESS)的能量利用率,解决储能子模块(energy sub-module,ESM)荷电状态(state of charge,SOC)均衡问题至关重要。针对现有的SOC均衡控制策略的不足,提出内外分层的快速SOC均衡控制策略。外层针对桥臂间或相间的SOC差异,通过改进MMC模型预测控制(model predictive predictive control,MPC),配合自适应均衡系数,快速调整功率差额。内层引入自适应虚拟电阻法,根据ESM的SOC情况确定主导ESM,自适应调节各单元的虚拟电阻,产生相应的电压梯度,结合MMC排序算法使ESM按照各自SOC进行功率分配,从而实现ESM的SOC快速均衡,提高DESS能量利用率。通过在Matlab/Simulink构建仿真模型,证明了所提控制策略的有效性和可行性。展开更多
考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM...考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。展开更多
基金supported by the National Natural Science Foundation of China(No.U20A20310 and No.52176199)sponsored by the Program of Shanghai Academic/Technology Research Leader(No.22XD1423800)。
文摘Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.
基金supported by the National Natural Science Foundation of China(62171172).
文摘CMOS image sensors produced by the existing CMOS manufacturing process usually have difficulty achieving complete charge transfer owing to the introduction of potential barriers or Si/SiO_(2)interface state traps in the charge transfer path,which reduces the charge transfer efficiency and image quality.Until now,scholars have only considered mechanisms that limit charge transfer from the perspectives of potential barriers and spill back effect under high illumination condition.However,the existing models have thus far ignored the charge transfer limitation due to Si/SiO_(2)interface state traps in the transfer gate channel,particularly under low illumination.Therefore,this paper proposes,for the first time,an analytical model for quantifying the incomplete charge transfer caused by Si/SiO_(2)interface state traps in the transfer gate channel under low illumination.This model can predict the variation rules of the number of untransferred charges and charge transfer efficiency when the trap energy level follows Gaussian distribution,exponential distribution and measured distribution.The model was verified with technology computer-aided design simulations,and the results showed that the simulation results exhibit the consistency with the proposed model.
基金the financial support from the China Scholarship Council(CSC)(No.202207550010)。
文摘The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.
基金supported by the BK21 FOUR project funded by the Ministry of Education,Korea(4199990113966).
文摘Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate.
文摘Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs.
文摘考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。