期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Letter to the Editor Re “Fractional Modeling and SOC Estimation of Lithium-ion Battery”
1
作者 Rahat Hasan Jonathan Scott 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期644-644,共1页
A Recent paper by Ma et al.,claims to estimate the state of charge of Lithium-ion batteries with a fractionalorder impedance model including a Warburg and a constant phase element(CPE)with a maximum error of 0.5%[1].T... A Recent paper by Ma et al.,claims to estimate the state of charge of Lithium-ion batteries with a fractionalorder impedance model including a Warburg and a constant phase element(CPE)with a maximum error of 0.5%[1].The proposed equivalent circuit model from[1]is reproduced in Fig.1. 展开更多
关键词 Fractional Modeling and soc estimation of Lithium-ion Battery Letter to the Editor Re
下载PDF
Robust state of charge estimation of lithium-ion battery via mixture kernel mean p-power error loss LSTM with heap-based-optimizer
2
作者 Wentao Ma Yiming Lei +1 位作者 Xiaofei Wang Badong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期768-784,I0016,共18页
The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,whi... The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively. 展开更多
关键词 soc estimation Long short term memory model Mixture kernel mean p-power error Heap-based-optimizer Lithium-ion battery Non-Gaussian noisy measurement data
下载PDF
State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Deep Neural Network
3
作者 M.Premkumar R.Sowmya +4 位作者 S.Sridhar C.Kumar Mohamed Abbas Malak S.Alqahtani Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2022年第12期6289-6306,共18页
It is critical to have precise data about Lithium-ion batteries,such as the State-of-Charge(SoC),to maintain a safe and consistent functioning of battery packs in energy storage systems of electric vehicles.Numerous s... It is critical to have precise data about Lithium-ion batteries,such as the State-of-Charge(SoC),to maintain a safe and consistent functioning of battery packs in energy storage systems of electric vehicles.Numerous strategies for estimating battery SoC,such as by including the coulomb counting and Kalman filter,have been established.As a result of the differences in parameter values between each cell,when these methods are applied to highcapacity battery packs,it has difficulties sustaining the prediction accuracy of overall cells.As a result of aging,the variation in the parameters of each cell is higher as more time is spent in operation.It is suggested in this study to establish an SoC estimate model for a Lithium-ion battery by employing an enhanced Deep Neural Network(DNN)approach.This is because the proposed DNN has a substantial hidden layer,which can accurately predict the SoC of an unknown driving cycle during training,making it ideal for SoC estimation.To evaluate the nonlinearities between voltage and current at various SoCs and temperatures,the proposed DNN is applied.Using current and voltage data measured at various temperatures throughout discharge/charge cycles is necessary for training and testing purposes.When the method has been thoroughly trained with the data collected,it is used for additional cells cycle tests to predict their SoC.The simulation has been conducted for two different Li-ion battery datasets.According to the experimental data,the suggested DNN-based SoC estimate approach produces a low mean absolute error and root-mean-square-error values,say less than 5%errors. 展开更多
关键词 Artificial intelligence deep neural network Li-ion battery parameter variation soc estimation
下载PDF
Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
4
作者 郑宏 刘煦 魏旻 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期581-587,共7页
In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, ... In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate.Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. 展开更多
关键词 state of charge(soc estimation temperature charge rate adaptive Kalman filter
下载PDF
An improved neural network model for battery smarter state-of-charge estimation of energy-transportation system
5
作者 Bingzhe Fu Wei Wang +1 位作者 Yihuan Li Qiao Peng 《Green Energy and Intelligent Transportation》 2023年第2期56-65,共10页
The safety and reliability of battery storage systems are critical to the mass roll-out of electrified transportation and new energy generation.To achieve safe management and optimal control of batteries,the state of ... The safety and reliability of battery storage systems are critical to the mass roll-out of electrified transportation and new energy generation.To achieve safe management and optimal control of batteries,the state of charge(SOC)is one of the important parameters.The machine-learning based SOC estimation methods of lithium-ion batteries have attracted substantial interests in recent years.However,a common problem with these models is that their estimation performances are not always stable,which makes them difficult to use in practical applications.To address this problem,an optimized radial basis function neural network(RBF-NN)that combines the concepts of Golden Section Method(GSM)and Sparrow Search Algorithm(SSA)is proposed in this paper.Specifically,GSM is used to determine the optimum number of neurons in hidden layer of the RBF-NN model,and its parameters such as radial base center,connection weights and so on are optimized by SSA,which greatly improve the performance of RBF-NN in SOC estimation.In the experiments,data collected from different working conditions are used to demonstrate the accuracy and generalization ability of the proposed model,and the results of the experiment indicate that the maximum error of the proposed model is less than 2%. 展开更多
关键词 Battery management soc estimation Data science Neural network Golden section method Sparrow search algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部