期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Specificity-preserving RGB-D saliency detection 被引量:1
1
作者 Tao Zhou Deng-Ping Fan +2 位作者 Geng Chen Yi Zhou Huazhu Fu 《Computational Visual Media》 SCIE EI CSCD 2023年第2期297-317,共21页
Salient object detection(SOD)in RGB and depth images has attracted increasing research interest.Existing RGB-D SOD models usually adopt fusion strategies to learn a shared representation from RGB and depth modalities,... Salient object detection(SOD)in RGB and depth images has attracted increasing research interest.Existing RGB-D SOD models usually adopt fusion strategies to learn a shared representation from RGB and depth modalities,while few methods explicitly consider how to preserve modality-specific characteristics.In this study,we propose a novel framework,the specificity-preserving network(SPNet),which improves SOD performance by exploring both the shared information and modality-specific properties.Specifically,we use two modality-specific networks and a shared learning network to generate individual and shared saliency prediction maps.To effectively fuse cross-modal features in the shared learning network,we propose a cross-enhanced integration module(CIM)and propagate the fused feature to the next layer to integrate cross-level information.Moreover,to capture rich complementary multi-modal information to boost SOD performance,we use a multi-modal feature aggregation(MFA)module to integrate the modalityspecific features from each individual decoder into the shared decoder.By using skip connections between encoder and decoder layers,hierarchical features can be fully combined.Extensive experiments demonstrate that our SPNet outperforms cutting-edge approaches on six popular RGB-D SOD and three camouflaged object detection benchmarks.The project is publicly available at https://github.com/taozh2017/SPNet. 展开更多
关键词 salient object detection(sod) RGB-D cross-enhanced integration module(CIM) multi-modal feature aggregation(MFA)
原文传递
Light field salient object detection:A review and benchmark 被引量:2
2
作者 Keren Fu Yao Jiang +3 位作者 Ge-Peng Ji Tao Zhou Qijun Zhao Deng-Ping Fan 《Computational Visual Media》 SCIE EI CSCD 2022年第4期509-534,共26页
Salient object detection(SOD)is a long-standing research topic in computer vision with increasing interest in the past decade.Since light fields record comprehensive information of natural scenes that benefit SOD in a... Salient object detection(SOD)is a long-standing research topic in computer vision with increasing interest in the past decade.Since light fields record comprehensive information of natural scenes that benefit SOD in a number of ways,using light field inputs to improve saliency detection over conventional RGB inputs is an emerging trend.This paper provides the first comprehensive review and a benchmark for light field SOD,which has long been lacking in the saliency community.Firstly,we introduce light fields,including theory and data forms,and then review existing studies on light field SOD,covering ten traditional models,seven deep learning-based models,a comparative study,and a brief review.Existing datasets for light field SOD are also summarized.Secondly,we benchmark nine representative light field SOD models together with several cutting-edge RGB-D SOD models on four widely used light field datasets,providing insightful discussions and analyses,including a comparison between light field SOD and RGB-D SOD models.Due to the inconsistency of current datasets,we further generate complete data and supplement focal stacks,depth maps,and multi-view images for them,making them consistent and uniform.Our supplemental data make a universal benchmark possible.Lastly,light field SOD is a specialised problem,because of its diverse data representations and high dependency on acquisition hardware,so it differs greatly from other saliency detection tasks.We provide nine observations on challenges and future directions,and outline several open issues.All the materials including models,datasets,benchmarking results,and supplemented light field datasets are publicly available at https://github.com/kerenfu/LFSOD-Survey. 展开更多
关键词 light field salient object detection(sod) deep learning BENCHMARKING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部