期刊文献+
共找到229,585篇文章
< 1 2 250 >
每页显示 20 50 100
Soil Physico-Chemical Properties and Different Altitudes Affect Arbuscular Mycorrhizal Fungi Abundance and Colonization in Cacao Plantations of Cameroon
1
作者 Franklin Tounkam Ketchiemo Beaulys Fotso +4 位作者 Astride Stéphanie Mouafi Djabou Victor Jos Eyamo Evina Japhet Youri Essambita Franck Maxime Ewane Tang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第2期57-82,共26页
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-... This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere. 展开更多
关键词 Agroecological Zone Altitude Variations Arbuscular Mycorrhizal fungi soil Properties Theobroma cacao
下载PDF
Effects of Fungi Fusarium sp. to Rhizosphere Soil and Physiological Characteristics of Camellia oleifera Abel.
2
作者 Xuejin WANG Kai YAN +2 位作者 Tianhua YU Zhannan YANG Shiqiong LUO 《Asian Agricultural Research》 2024年第2期22-30,共9页
[Objectives]To study the effects of fungi Fusarium sp.to rhizosphere soil and physiological characteristics of Camellia oleifera Abel.[Methods]We investigated the effects of Fusarium sp.to rhizosphere soil nutrient el... [Objectives]To study the effects of fungi Fusarium sp.to rhizosphere soil and physiological characteristics of Camellia oleifera Abel.[Methods]We investigated the effects of Fusarium sp.to rhizosphere soil nutrient element content and metabolites of C.oleifera.C.oleifera was inoculated with the suspension of Fusarium sp.in pot experiments and ammonium-N,available phosphorus,available potassi-um,organic matter,enzymes and pH of rhizosphere soil,MDA content,activity of SOD,POD of C.oleifera leaves were analyzed.[Results]Fusarium sp.stress significantly inhibited soil enzyme activities and significantly reduced available phosphorus content,especially for phospha-tase and sucrase.Antioxidant enzyme activities in C.oleifera tissues showed that Fusarium sp.stress significantly increased MDA and SOD enzyme activities and decreased POD enzyme activity.Especially,SOD enzyme activity was elevated by 53.86%compared with the CK group.In addition,analysis of the content of major metabolites in C.oleifera leaves showed that Fusarium sp.stress significantly reduced the content of total flavonoids,quercetin,isoquercitrin and isoquercitrin in C.oleifera leaves by 7.80%,50.00%and 75.90%,respectively.[Conclusions]Our results are an important step which showed strong resistance of C.oleifera and can give a novel insight for researches on the effects in the rhizosphere soil enzyme,soil nutrient elements and metabolites of C.oleifera under the Fusarium sp.too. 展开更多
关键词 Camellia oleifera Abel. Fusarium sp. Antioxidant enzymes soil enzymes soil quality
下载PDF
Dynamic Study on Soil Fungi Population in Artificial Vegetation Areas of Shapotou in Ningxia 被引量:10
3
作者 窦彩虹 陈应武 《Agricultural Science & Technology》 CAS 2008年第3期145-148,共4页
[Objective] The changes of fungi in different soil layers and sand dunes of artificial vegetation areas in Ningxia Shapotou during different times were studied. [Method]The number of soil fungi in different soil layer... [Objective] The changes of fungi in different soil layers and sand dunes of artificial vegetation areas in Ningxia Shapotou during different times were studied. [Method]The number of soil fungi in different soil layers at same plot and in same soil layer at different plots were changed significantly.The quantitative distribution of fungi was the most in Cuiliugou but the fewest in quicksand among all soil types.[Result] The quantity of soil fungi in grasslands was varied in different soil layers at the same sample and in the same soil layer at different sample plots. The quantity of fungi from different soil types distributed mostly in Cuiliugou, a natural desert steppe, but little in quicksand. The species and quantity of fungi in CuiLiugou was the most in different types of sand-fixing lands. [Conclusion] The quantity of soil fungi in artificial vegetation areas raises with the increase of sand-fixing ages, The enhancement of vegetation construction and artificial management measures in inland is helpful for improving present situation of desertification. 展开更多
关键词 DESERT Artificial VEGETATION area fungi POPULATION
下载PDF
Effects of Arbuscular Mycorrhizal Fungi(AMF) on Growth of Upland Rice under Soil Pb Contamination 被引量:2
4
作者 张旭红 杨文杰 +2 位作者 王丽明 孙长坡 雷志轶 《Agricultural Science & Technology》 CAS 2013年第11期1624-1628,共5页
[Objective] This study aimed to investigate the effects of arbuscular mycor-rhizal fungi (AMF) on growth of upland rice under soil Pb contamination. [Method] Using potting method, the effects of Glomus mosseae on th... [Objective] This study aimed to investigate the effects of arbuscular mycor-rhizal fungi (AMF) on growth of upland rice under soil Pb contamination. [Method] Using potting method, the effects of Glomus mosseae on the growth of Oryzal sati-va L. under different soil Pb concentrations (0, 300, 600 mg/kg) were investigated. [Result] According to the results, the mycorrhizal colonization rate of upland rice in-oculated with Glomus mosseae was significantly reduced (P〈0.05) with the increase of Pb concentration in soil. Compared with non-inoculation treatment, inoculation of arbuscular mycorrhizal fungi significantly improved the biomass of upland rice and Pb concentration of upland rice roots with addition of 300 mg/kg Pb but significantly reduced Pb concentration of upland rice shoots, which was consistent with the re-duced R/S (P〈0.05); with addition of 600 mg/kg Pb, inoculation of arbuscular mycor-rhizal fungi significantly improved the biomass of upland rice roots (P〈0.05) but sig-nificantly reduced Pb concentration of upland rice shoots and roots (P〈0.05); there was no significant difference in R/S between inoculation treatment and non-inocula-tion treatment. [Conclusion] This study indicated that inoculating Glomus mosseae under certain Pb concentrations could to some extent al eviate the toxic effects of Pb on Oryzal sativa L. 展开更多
关键词 Heavy metal PB Arbuscular mycorrhizal fungi Upland rice
下载PDF
Effects of Arbuscular Mycorrhizal Fungi on Upland Rice Oxidative Stress Induced by Cu and Pb Contamination in Soil 被引量:2
5
作者 张旭红 王丽明 +1 位作者 张莘 林爱军 《Agricultural Science & Technology》 CAS 2014年第1期123-126,131,共5页
[Objective] This study aimed to investigate the effect of arbuscular mycor-rhizal fungi on upland rice oxidative stress induced by Cu and Pb contamination in soil. [Method] The upland rice seeds were sowed in pots, in... [Objective] This study aimed to investigate the effect of arbuscular mycor-rhizal fungi on upland rice oxidative stress induced by Cu and Pb contamination in soil. [Method] The upland rice seeds were sowed in pots, in which the soil was previously mixed with a certain amount of Glomus mosseae and 0, 100 and 200 mg/kg Cu, or 0, 300 and 600 mg/kg Pb. In the control treatment, Glomus mosseae was inactivated before mixed into the soil. Then, the physiological and chemical properties of the aboveground parts of rice plants were measured at mature stage. [Result] Compared with the control treatment (NM), Glomus mosseae (GM) treat-ment inhibited the POD, CAT and SOD activity while increased the soluble protein content under 100 mg/kg Cu and 300 mg/kg Pb treatment, improved the POD and CAT activity and soluble protein content while decreased SOD activity under 200 mg/kg Cu. SOD and POD activity showed no significant difference between NM and GM treatment under 600 mg/kg Pb, but the CAT activity was enhanced and soluble protein content was decreased. [Conclusion] This study wil provide theoretical refer-ence for bioremediation of soil heavy metal pol ution. 展开更多
关键词 PB Arbuscular mycorrhizal fungi Upland rice Oxidative stress
下载PDF
Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China 被引量:13
6
作者 QIU Lang BI Yinli +3 位作者 JIANG Bin WANG Zhigang ZHANG Yanxu Yryszhan ZHAKYPBEK 《Journal of Arid Land》 SCIE CSCD 2019年第1期135-147,共13页
In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biolog... In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biological properties of soil also change, resulting in more susceptible to degradation. In particular, subsidence causes disturbance of the symbioses of plant and microbe that can play a beneficial role in the establishment of vegetation communities in degraded ecosystems. The objective of this study was to evaluate the effects of revegetation with exotic arbuscular mycorrhizal fungi(AMF) inoculum on the chemical and biological properties of soil over time in mining subsidence areas. Soils were sampled at a depth up to 30 cm in the adjacent rhizosphere of Amorpha fruticose Linn. from five reclaimed vegetation communities in northwestern China. In August 2015, a field trial was set up with five historical revegetation experiments established in 2008(7-year), 2011(4-year), 2012(3-year), 2013(2-year) and 2014(1-year), respectively. Each reclamation experiment included two treatments, i.e., revegetation with exotic AMF inoculum(AMF) and non-AMF inoculum(the control). Root mycorrhizal colonization, glomalin-related soil protein(GRSP), soil organic carbon(SOC), soil nutrients, and enzyme activities were also assessed. The results showed that mycorrhizal colonization of inoculated plants increased by 33.3%–163.0% compared to that of non-inoculated plants(P<0.05). Revegetation with exotic AMF inoculum also significantly improved total GRSR(T-GRSP) and easily extracted GRSP(EE-GRSP) concentrations compared to control, besides the T-GRSP in 1-year experiment and the EE-GRSP in 2-year experiment. A significant increase in SOC content was only observed in 7-year AMF reclaimed soils compared to non-AMF reclaimed soils. Soil total N(TN), Olsen phosphorus(P) and available potassium(K) were significantly higher in inoculated soil after 1–7 years of reclamation(except for individual cases), and increased with reclamation time(besides soil Olsen P). The exotic AMF inoculum markedly increased the average soil invertase, catalase, urease and alkaline phosphatase by 23.8%, 21.3%, 18.8% and 8.6%, respectively(P<0.01), compared with the control. Root mycorrhizal colonization was positively correlated with soil parameters(SOC, TN and soil available K) and soil enzyme activities(soil invertase, catalase, urease and alkaline phosphatase) in both AMF and non-AMF reclaimed soils(P<0.05), excluding availableK in non-AMF reclaimed soils. T-GRSP(P<0.01) and EE-GRSP(P<0.05) were significantly correlated with the majority of edaphic factors, except for soil Olsen P. The positive correlation between root mycorrhizal colonization and available K was observed in AMF reclaimed soils, indicating that the AMF reclaimed soil with a high root mycorrhizal colonization could potentially accumulate available K in soils. Our findings concluded that revegetation with exotic AMF inoculum influenced soil nutrient availability and enzyme activities in the semi-arid ecosystem, suggesting that inoculating AMF can be an effective method to improve soil fertility and support restoration of vegetation communities under poor conditions like soil nutrient deficiency and drought. 展开更多
关键词 REVEGETATION MYCORRHIZAL COLONIZATION glomalin-related soil proteins ARBUSCULAR MYCORRHIZAL fungi coal mining Amorpha fruticose
下载PDF
Study of cellulolytic soil fungi and two nova species and new medium 被引量:2
7
作者 KHALID Mahmood YANG Wei-jun +2 位作者 KISHWAR Nazir RAJPUT Zahid Iqbal ARIJO Abdullah G. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第6期459-466,共8页
This study is aimed at identifying and determining the percentage of occurrence frequency of cellulose decomposing soil fungi. The soil samples were inoculated into culture plates prepared in Sabouraud medium under st... This study is aimed at identifying and determining the percentage of occurrence frequency of cellulose decomposing soil fungi. The soil samples were inoculated into culture plates prepared in Sabouraud medium under sterilized conditions and incubated at 30 ℃ for 4 to 7 d. The identified fungal species were incubated in self-designed cellulose medium for testing their cellulolytic ability. Forty-two species, including2 nova species, representing sixteen genera showed growth and sporulation in the cellulose medium. Most of the isolated species were from genus Aspergillus and Penicillium. Aspergillus niger and Mucor hiemalis showed highest occurrence frequency (45% and 36% respectively), as these species were collected from about 80% of soil samples. Being agar free and cheaper, the new fungal medium designed showed results equivalent to Sabouraud medium. 展开更多
关键词 Cellulolytic soil fungi Cellulose medium Nova species TAXONOMY
下载PDF
Effect of inoculation with arbuscular mycorrhizal fungi on the degradation of DEHP in soil 被引量:6
8
作者 WANGShu-guang LINXian-gui +1 位作者 YINRui HOUYan-lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第3期458-461,共4页
The effect of inoculation with arbuscular mycorrhizal(AM) fungi( Acaulospora lavis ) on the degradation of di(2 ethylhexyl) phthalate(DEHP) in soil was studies. Cowpea plants (Pigna sinensis) were used as host p... The effect of inoculation with arbuscular mycorrhizal(AM) fungi( Acaulospora lavis ) on the degradation of di(2 ethylhexyl) phthalate(DEHP) in soil was studies. Cowpea plants (Pigna sinensis) were used as host plants and grown in a specially designed rhizobox. The experimental results indicated that, both in sterile and non sterile soil, mycorrhizal colonization rates were much higher in the mycorrhizal plants than in the non mycorrhizal plants. Addition of 4 mg/kg DEHP slightly affected mycorrhizal colonization, but the addition of 100 mg/kg DEHP significantly decreased mycorrhizal colonization. DEHP degradation in the mycorrhizosphere(Ms) and hyphosphere(Hs), especially in the Hs, increased after inoculation with Acaulospora lavis . It is concluded that mycorrhizal hyphae play an important role in the plant uptake, degradation and translocation of DEHP. The mechanism might be attributed to increased numbers of bacteria and actinomycetes and activity of dehydrogenase, urease and acid phosphatase in the Ms and Hs by mycorrhizal fungi. 展开更多
关键词 AM fungi inoculation DEHP CONCENTRATION DEGRADATION
下载PDF
Effect of methamidophos on soil fungi community in microcosms by plate count,DGGE and clone library analysis 被引量:11
9
作者 LI Xinyu ZHANG Huiwen WU Minna ZHANG Yan ZHANG Chenggang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第5期619-625,共7页
Methamidophos was widely used a pesticide in northern China. The potential influences of methamidophos on soil fungal community in black soil were assessed by plate count, 28S rDNA-PCR-DGGE, and clone library analysis... Methamidophos was widely used a pesticide in northern China. The potential influences of methamidophos on soil fungal community in black soil were assessed by plate count, 28S rDNA-PCR-DGGE, and clone library analysis. Three methamidophos levels (50, 150, and 250 mg/kg) were tested in soil microcosms. Results from plate count during a 60-d microcosm experiment showed that high concentrations of methamidophos (250 mg/kg) could significantly stimulate fungal populations. DGGE (denaturing gradient gel electrophoresis) fingerprinting patterns showed a significant difference between the responses of culturable and total fungi communities under the stress of methamidophos. Shannon diversity indices calculated from DGGE profiles indicated that culturable fungi in all microcosms with methamidophos treatment increased after 1 week of incubation. However, the diversity indices of total fungi decreased in the first week, as compared to the stimulation of culturable fungi. At the 8th week, however, all the microcosms treated by methamidophos were similar to the control microcosms in community structure as suggested by the Shannon diversity indices for both culturable and total fungi. In contrast, after 1 week the fungal structure of culturable and unculturable both were disturbed to different extent under the stresses of methamidophos by clustering analysis. Clone sequencing analysis indicated the stimulation of pathogenic and unculturable fungal populations by methamidophos treatment, suggetsing potential risks of plant disease outbreak. 展开更多
关键词 methamidophos clone sequencing DGGE (denaturing gradient gel electrophoresis) fungi diversity
下载PDF
Evaluation of soil flame disinfestation(SFD) for controlling weeds,nematodes and fungi 被引量:6
10
作者 WANG Xiao-ning CAO Ao-cheng +8 位作者 YAN Dong-dong WANG Qian HUANG Bin ZHU Jia-hong WANG Qiu-xia LI Yuan OUYANG Can-bin GUO Mei-xia WANG Qian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第1期164-172,共9页
Soil flame disinfestation(SFD) is a form of physical disinfestation that can be used both in greenhouses and on field crops. Its use for soil disinfestation in different crop growing conditions makes it increasingly a... Soil flame disinfestation(SFD) is a form of physical disinfestation that can be used both in greenhouses and on field crops. Its use for soil disinfestation in different crop growing conditions makes it increasingly attractive for controlling soilborne pathogens and weeds. But little is known about the effect on weeds and soilbrone diseases. This study reports on greenhouses and field crops in China that determined the efficacy of SFD to control weeds, nematodes and fungi. It also determined the impact of SFD on the soil physical and chemical properties(water content, bulk density, NO3^–-N content, NH4^+-N content, conductivity and organic matter) in three field trials. A second generation SFD machine was used in these trials. SFD treatment significantly reduced weeds(>87.8%) and root-knot nematodes(Meloidogyne incognita)(>98.1%). Plant height and crop yield was significantly increased with SFD treatment. NO3^–-N and NH4^+-N increased after the SFD treatment, and there was also an increase in soil conductivity. Water content, bulk density and organic matter decreased significantly in the soil after the SFD treatment compared to the control. Soil flame disinfestation is a potential technique for controlling weeds and diseases in greenhouses or in fields. SFD is a non-chemical, safe, environmentally-friendly soil disinfection method. 展开更多
关键词 soil flame disinfestation WEEDS pests control soil properties field application sustainable
下载PDF
Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil 被引量:6
11
作者 YU Yunlong,CHU Xiaoqiang,PANG Guohui,XIANG Yueqin,FANG Hua Department of Plant Protection,College of Agriculture and Biotechnology,Zhejiang University,Hangzhou 310029,China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第2期179-185,共7页
Carbendazim, a systemic benzimidazole fungicide, is applied repeatedly to control plant diseases including soilborne diseases, over a growing season. Studies were carried out under laboratory conditions to assess the ... Carbendazim, a systemic benzimidazole fungicide, is applied repeatedly to control plant diseases including soilborne diseases, over a growing season. Studies were carried out under laboratory conditions to assess the effects of repeated carbendazim applications on its persistence and microbial community in soil. The results indicate that dissipation of carbendazim in soil was accelerated with its application frequency. The degradation rate constant of carbendazim was increased significantly from 0.074 d-1 to 0.79 d-1. The corresponding half-life was shorten markedly from 9.3 d to 0.9 d after four repeated applications. No significant inhibitory effect of carbendazim on soil microbial utilization of the carbon sources was observed after first treatment, but a slight increase in average well color development (AWCD) was shown after second, third, and fourth applications. It suggested that soil microorganisms become adapted to carbendazim after repeated application. Simpson and Shannon indexes of soil microbial community from carbendazim treated soil were also similar to those from the control soil, indicating that the richness and dominant character of soil microorganisms remain unchangeable after repeated application. However, after first, second, and third addition of carbendazim, McIntosh indexes on day 21 were significantly higher compared with the control, suggesting that balance of soil microorganisms was altered due to the enrichment of the specific carbendazim-adapting strains in soil 展开更多
关键词 CARBENDAZIM DEGRADATION soil microorganism repeated application
下载PDF
Diversity and Classification of Soil Fungi in Main Peanut Producing Areas of China 被引量:2
12
作者 董李学 张谊 +3 位作者 杜瑞焕 姚彦坡 齐彪 项爱丽 《Agricultural Science & Technology》 CAS 2017年第11期2067-2069,2170,共4页
In the study, 1 255 fungal strains were isolated from 105 peanut soil samples collected from 15 counties in 10 provinces of China. These fungi were identified to 21 genera, using the method of microscopical observatio... In the study, 1 255 fungal strains were isolated from 105 peanut soil samples collected from 15 counties in 10 provinces of China. These fungi were identified to 21 genera, using the method of microscopical observation according to morphology. And 2 genera were members of oomycetes, 3 genera of ascomycota and 16 genera of mitosporic fungi. In these soil samples, the dominant species were Penicillium, Trichoderma and Fusarium, accounting for 28.89%, 14.16% and 8.64%, respectively. 展开更多
关键词 PEANUT soil fungi DIVERSITY IDENTIFICATION
下载PDF
Effects of Arbuscular Mycorrhizal Fungi on Metals Uptake, Physiological and Biochemical Response of <i>Medicago Sativa</i>L. with Increasing Zn and Cd Concentrations in Soil 被引量:4
13
作者 Sadia Kanwal Asma Bano Riffat Naseem Malik 《American Journal of Plant Sciences》 2015年第18期2906-2923,共18页
The effect of mycorrhizal symbiosis on metal accumulation and plant tolerance are not commonly studied in medicinal plants under metal stress. The objective of this study was to assess the impact of mycorrhiza on alfa... The effect of mycorrhizal symbiosis on metal accumulation and plant tolerance are not commonly studied in medicinal plants under metal stress. The objective of this study was to assess the impact of mycorrhiza on alfalfa plants with the increase of Zn and Cd toxicity. The experiment was conducted under controlled laboratory conditions. Zinc (Zn) and cadmium (Cd) uptake, some biochemical and physiological parameters were studied in eight-week-old alfalfa plants in response to inoculation or not with arbuscular mycorrhizal fungi (AMF) and with the increase of Zn (0, 100, 300, 900 mg·kg-1) and Cd concentrations (0, 100, 300, 600 mg·kg-1) in soil. The results showed that mycorrhizal (M) plants exhibited tolerance to Zn and Cd up to 300 mg·kg-1 in comparison to non-mycorrhizal (NM) plants which exhibited a significant growth reduction at the same soil Zn and Cd level. M inoculation reduced the Zn and Cd accumulation in shoot and showed higher Zn and Cd contents in roots which showed a different Zn and Cd distribution in AMF associated or non-associated plants. Mycorrhizal plants increased phosphorus (P) contents at all Zn and Cd concentrations except the highest (600 and 900 mg·kg-1) leading significant alterations in biochemical contents such as proline, antioxidant enzymes in leaves and also in nutrients (N, P, K, Cu, Ni, Fe, Mn). Zn and cadmium toxicity cause to increase the proline content in shoot of NM plants, however, proline contents are lower in M plants. Results confirmed that AMF protected alfalfa plants against Zn and Cd toxicity. Mycorrhizal colonization was able to form an efficient symbiosis with alfalfa plants in moderately contaminated Zn and Cd soils (300 mg·kg-1) and play an important role in food quality and safety. 展开更多
关键词 Zinc Cadmium ARBUSCULAR MYCORRHIZAL fungi ALFALFA Phosphorus Antioxidant Enzymes
下载PDF
Characterization of recuperating talent of white-rot fungi cells to dye-contaminated soil/water 被引量:4
14
作者 Bugra Dayi Aidai Duishemambet Kyzy Hatice Ardag Akdogan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期634-638,共5页
This study was purposed to explore the decolorization of dyes by fungi on either a soil or in a liquid medium and to determine the application through batch shaking system. Two commercial dyes were decolorized and stu... This study was purposed to explore the decolorization of dyes by fungi on either a soil or in a liquid medium and to determine the application through batch shaking system. Two commercial dyes were decolorized and studied with four fungal strains in three media. Fungal growth is the best in malt extract/glucose medium for all organisms. Decolorization of reactive blue 220 and methyl red was investigated in soil medium by Trametes versicolor. These dyes were removed 91% and 80% for methyl red and reactive blue 220 respectively(dye concentration; 100 mg·L^(-1)) by both organisms. Enzymatic activities were monitored. Laccase(Lac) and manganese peroxidase(Mn P) were detected. MnP enzyme had important role for the dye decolorization. This study demonstrates that it is possible to decolorize some synthetic dyes, which would be highly advanced for dye containing wastewater and soil. These applications could be used for dye bioremediation. 展开更多
关键词 TRAMETES VERSICOLOR Bioremediation DYE Contamination soil Waste WATER
下载PDF
Indigenous arbuscular mycorrhizal fungi play a role in phosphorus depletion in organic manure amended high fertility soil 被引量:2
15
作者 HUO Wei-ge CHAI Xiao-fen +3 位作者 WANG Xi-he William David BATCHELOR Arjun KAFLE FENG Gu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第10期3051-3066,共16页
The species richness and propagule number of arbuscular mycorrhizal fungi(AMF)are high in intensively-managed agricultural soils.Past research has shown that AMF improve crop phosphorus(P)uptake under low soil P condi... The species richness and propagule number of arbuscular mycorrhizal fungi(AMF)are high in intensively-managed agricultural soils.Past research has shown that AMF improve crop phosphorus(P)uptake under low soil P conditions,however it is unclear if AMF play a role in high Olsen-P soils.In this study,we investigated whether native fungal benefits exist under high P input field conditions in-situ and contribute to P utilization.We installed in-grow tubes which were sealed with different membrane pore sizes(30 or 0.45μm)to allow or prevent AMF hyphae access to the hyphal compartment and prevent cotton roots from penetrating the chamber.We used the depletion of soil available P(Olsen-P)in the hyphae accessed compartment to indicate P uptake by the native AMF community.Our results showed that the native AMF mediated P depletion and microbial biomass P(MBP)turnover and caused the largest Olsen-P depletion ratio and MBP turnover ratio in the high P treatments(Olsen-P:78.29 mg kg^(-1)).The cotton roots in each fertilization regime were colonized by a unique AMF community and Glomus and Paraglomus were the dominant genera,implying the longterm fertilization regimes domesticated the AMF community.We conclude that native AMF caused the P depletion and P turnover even under high soil Olsen-P conditions. 展开更多
关键词 arbuscular mycorrhizal fungi phosphorus depletion high P soil Gossypium spp. indigenous community mesh cores
下载PDF
Soil fungistasis and its relations to soil microbial composition and diversity:A case study of a series of soils with different fungistasis 被引量:8
16
作者 Wu Minna Zhang Huiwen +3 位作者 Ll Xinyu Zhang Yan Su Zhencheng Zhang Chenggang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第7期871-877,共7页
Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community ... Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community composition,structure,diversity as well as function.In this study,the bacterial community composition and diversity of a series of soils treated by autoclaving,which coming from the same original soil sample and showing gradient fungistasis to the target soil-borne pathogen fungi Fusarium grami... 展开更多
关键词 soil fungistasis 16S rDNA clone library microbial diversity bacterial community composition
下载PDF
Effectivity of arbuscular mycorrhizal fungi collected from reclaimed mine soil and tallgrass prairie 被引量:1
17
作者 Mark Thorne Landon Rhodes John Cardina 《Open Journal of Ecology》 2013年第3期224-233,共10页
We examined suitability of arbuscular mycorrhizal fungi (AMF) associated with cool-season nonnative forages on reclaimed surface-mined land in southeast Ohio for establishment of native warm-season grasses. The goal o... We examined suitability of arbuscular mycorrhizal fungi (AMF) associated with cool-season nonnative forages on reclaimed surface-mined land in southeast Ohio for establishment of native warm-season grasses. The goal of establishing these grasses is to diversify a post-reclamation landscape that is incapable of supporting native forest species. A 16-week glasshouse study compared AMF from a 30-year reclaimed mine soil (WL) with AMF from native Ohio tallgrass prairie soil (CL). Four native grasses were examined from seedling through 16 weeks of growth. Comparisons were made between CL and WL AMF on colonized (+AMF) and non-colonized plants (–AMF) at three levels of soil phosphorus (P). Leaves were counted at 4 week intervals. Shoot and root biomass and percent AMF root colonization were measured at termination. We found no difference between WL and CL AMF. Added soil P did not reduce AMF colonization, but did reduce AMF efficacy. Big bluestem (Andropogon gerardii Vitman), Indiangrass (Sorghastrum nutans (L.) Nash), and tall dropseed (Sporobolus asper (Michx.) Kunth) benefited from AMF only at low soil P while slender wheatgrass (Elymus trachycaulus (Link) Gould ex Shinners) exhibited no benefit. Establishment of tallgrass prairie dominants big blue-stem and Indiangrass would be supported by the mine soil AMF. It appears that the non-native forage species have supported AMF equally functional as AMF from a regionally native tallgrass prairie. Tall dropseed and slender wheatgrass were found to be less dependent on AMF than big bluestem or Indiangrass and thus would be useful in areas with little or no AMF inoculum. 展开更多
关键词 ARBUSCULAR MYCORRHIZAL fungi MYCORRHIZAE Ecosystem Restoration Surface Mining CALCAREOUS Mine soil PRAIRIE Grasses
下载PDF
Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum bobr.Under saline soil conditions 被引量:2
18
作者 Jing Pan CuiHua Huang +5 位作者 Fei Peng Tao Wang Jie Liao ShaoXiu Ma QuanGang You Xian Xue 《Research in Cold and Arid Regions》 CSCD 2022年第6期393-402,共10页
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ... Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR. 展开更多
关键词 Nitraria tangutorum Bobr. Arbuscular mycorrhizal fungi Plant growth-promoting rhizobacteria Morphological development Photosynthesis physiology soil structure
下载PDF
The effect of soil moisture on the response by fungi and bacteria to nitrogen additions for N_(2)O production 被引量:1
19
作者 Lei Zhang Junqiang Zheng +4 位作者 Xu Han Junhui Zhang Chengxu Li Shicong Geng Shijie Han 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第5期2037-2045,共9页
In addition to bacteria,the contribution of fungi to nitrous oxide(N_(2)O)production has been recognized but the responses of these two broad and unrelated groups of microorganisms to global environmental changes,atmo... In addition to bacteria,the contribution of fungi to nitrous oxide(N_(2)O)production has been recognized but the responses of these two broad and unrelated groups of microorganisms to global environmental changes,atmospheric nitrogen(N)deposition,and precipitation in terms of N_(2)O production are unclear.We studied how these two microbial-mediated N_(2)O production pathways responded to soil moisture conditions and to N addition in an N-limited temperate forest.Soils from a long-term N addition experiment in Changbai Mountain,northeastern China were incubated.Varied concentrations of cycloheximide and streptomycin,both inhibitors of fungal and bacterial activity,were used to determine the contributions of both to N_(2)O production in 66%,98%and 130%water-filled pore spaces(WFPS).The results showed that N_(2)O production decreased significantly with increasing cycloheximide concentration whereas streptomycin was only inhibiting N_(2)O emissions at 98%and 130%WFPS.The bacterial pathway of N_(2)O production in N-addition(Nadd)soil was significantly more dominant than that in untreated(Namb)soil.The difference in the fungal pathway of N_(2)O production between the soil with nitrogen addition and the untreated soil was not significant.Net N_(2)O emissions increased with increasing soil moisture,especially at 130%WFPS,a completely flooded condition.Bacteria dominated carbon dioxide(CO_(2))and N_(2)O emissions in Nadd soil and at 130%WFPS regardless of N status,while fungi dominated CO_(2)and N_(2)O emissions in soil without N addition at 66%and 98%WFPS.The results suggest that flooded soil is an important source of N_(2)O emissions and that bacteria might be better adapted to compete in fertile soils under anoxic conditions. 展开更多
关键词 Nitrous oxide fungi BACTERIA Nitrogen addition soil moisture conditions
下载PDF
Shifting cultivation effects on soil fungi and bacterial population in Chittagong Hill Tracts, Bangladesh 被引量:1
20
作者 Sohag Miah Soma Dey S.M.Sirajul Haque 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第3期311-318,397,共9页
A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vatio... A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vation and village common forest-managed by indigenous community was at Madhya Para in Rangamati district and the second pair of sites with the shifting cultivated land and village common forest at Ampu Para in Bandarban district of Chittagong Hill Tracts. At both the locations with two different land uses, soil textures in surface (0?10 cm) and sub-surface (10?20 cm) soils varied from sandy loam to sandy clay loam. Soil pH and moisture content were lower in shifting cultivated land com-pared to village common forest. The results also showed that both fungal and bacterial population in surface and subsurface soils was significantly (p ≤ 0.05) lower, in most cases, in shifting cultivated land compared to village common forest at both Madhya Para and Ampu Para. At Ranga-mati and Bandarban in shifting cultivated lands, Colletrotrichum and Fusarium fungi were absent and all the bacterial genus viz. Coccus, Bacillus and Streptococcus common in two different locations with dif-ferent land uses. Common identified fungi at both the land uses and locations were Aspergillus, Rhizopus, Trichoderma and Penicillium. Further study can be done on the other soil biota to understand the extent of environmental deterioration due to shifting cultivation. 展开更多
关键词 shifting cultivation fungi BACTERIA soil biological properties village common forest Chittagong Hill Tracts BANGLADESH
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部