Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled ...Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.展开更多
New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solu...New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.展开更多
With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usi...With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.展开更多
In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian s...In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian solutions have been generated.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.展开更多
The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of t...The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.展开更多
A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equati...A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.展开更多
In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions ...In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions contain the double Jacobi elliptic function-like solutions, the double solitary wave-like solutions, and so on. The method is also powerful to some other nonlinear wave equations in (2+1) dimensions.展开更多
Abstract By applying the Lie group method, the (2+l)-dimensional soliton equation is reduced to some (1+1)-dimensional nonlinear equations. Based upon some new explicit solutions of the (2+1)-dimensional brea...Abstract By applying the Lie group method, the (2+l)-dimensional soliton equation is reduced to some (1+1)-dimensional nonlinear equations. Based upon some new explicit solutions of the (2+1)-dimensional breaking soliton equation are obtained.展开更多
In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilinea...In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.展开更多
Starting from a discrete spectral problem, a hierarchy of integrable lattice soliton equations is derived. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamil...Starting from a discrete spectral problem, a hierarchy of integrable lattice soliton equations is derived. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure. A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a Biicklund transformation for the resulting integrable lattice equations. At last, conservation laws of the hierarchy are presented.展开更多
In a recent paper [Commun. Theor. Phys. (Beijing, China) 49 (2008) 268], Huang et al. gave a general variable separation solution to the (2+1)-dimensional breaking soliton equation via a special Biicldund trans...In a recent paper [Commun. Theor. Phys. (Beijing, China) 49 (2008) 268], Huang et al. gave a general variable separation solution to the (2+1)-dimensional breaking soliton equation via a special Biicldund transformation and the variable separation approach. In terms of the derived variable separation solution and by introducing Jacobi elliptic functions, they claimed that nonelastic types of interaction between Jacobi elliptic function waves are investigated both analytically and graphically. We show that some inappropriateness or errors exist in their paper, and say nothing of the conclusion that some nonelastic types of interaction between Jacobi elliptic function waves in the (2+1)-dimensional breaking soliton equation have been found.展开更多
A hierarchy of nonlinear lattice soliton equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by using a trace identity formula. Moreover, a Da...A hierarchy of nonlinear lattice soliton equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by using a trace identity formula. Moreover, a Darboux transformation is established with the help of gauge transformations of Lax pairs for the typical lattice soliton equations. The exact solutions are given by applying the Darboux transformation.展开更多
Based on the Weierstrass elliptic function equation, a new Weierstrass semi-rational expansion method and its algorithm are presented. The main idea of the method changes the problem solving soliton equations into ano...Based on the Weierstrass elliptic function equation, a new Weierstrass semi-rational expansion method and its algorithm are presented. The main idea of the method changes the problem solving soliton equations into another one solving the corresponding set of nonlinear algebraic equations. With the aid of Maple, we choose the modified KdV equation, (2+ 1)-dimensional KP equation, and (3+1)-dimensional Jimbo-Miwa equation to illustrate our algorithm. As a consequence, many types of new doubly periodic solutions are obtained in terms of the Weierstrass elliptic function.Moreover the corresponding new Jacobi elliptic function solutions and solitary wave solutions are also presented as simple limits of doubly periodic solutions.展开更多
By means of the generalized direct method,a relationship is constructed between the new solutions andthe old ones of the (3+1)-dimensional breaking soliton equation.Based on the relationship,a new solution is obtained...By means of the generalized direct method,a relationship is constructed between the new solutions andthe old ones of the (3+1)-dimensional breaking soliton equation.Based on the relationship,a new solution is obtainedby using a given solution of the equation.The symmetry is also obtained for the (3+1)-dimensional breaking solitonequation.By using the equivalent vector of the symmetry,we construct a seven-dimensional symmetry algebra and getthe optimal system of group-invariant solutions.To every case of the optimal system,the (3+1)-dimensional breakingsoliton equation is reduced and some solutions to the reduced equations are obtained.Furthermore,some new explicitsolutions are found for the (3+1)-dimensional breaking soliton equation.展开更多
Based on the resulting Lax pairs of the generalized coupled KdV soliton equation, a new Darboux transformation with multi-parameters for the generalized coupled KdV soliton equation is derived with the help of a gauge...Based on the resulting Lax pairs of the generalized coupled KdV soliton equation, a new Darboux transformation with multi-parameters for the generalized coupled KdV soliton equation is derived with the help of a gauge transformation of the spectral problem. By using Darboux transformation, the generalized odd-soliton solutions of the generalized coupled KdV soliton equation are given and presented in determinant form. As an application, the first two cases are given.展开更多
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in...Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.展开更多
A new three-dimensional Lie algebra and its corresponding loop algebra are constructed, from which a modified AKNS soliton-equation hierarchy is obtained.
The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kind...The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.展开更多
Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,wi...Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,with applications particularly in ocean physics and mechatronics(electrical electronics and mechanical)engineering.Infinitesimal generators of Lie point symmetries of the equation are computed using Lie group analysis of differen-tial equations.In addition,we construct commutation as well as Lie adjoint representation tables for the nine-dimensional Lie algebra achieved.Further,a one-dimensional optimal system of Lie subalgebras is also presented for the soliton equation.This consequently enables us to generate abundant group-invariant solutions through the reduction of the understudy equation into various ordinary differential equations(ODEs).On solving the achieved nonlinear differential equations,we secure various solitonic solutions.In conse-quence,these solutions containing diverse mathematical functions furnish copious shapes of dynamical wave structures,ranging from periodic,kink and kink-shaped nanopteron,soliton(bright and dark)to breather waves with extensive wave collisions depicted.We physically interpreted the resulting soliton solutions by imploring graphical depictions in three dimensions,two dimensions and density plots.Moreover,the gained group-invariant solutions involved several arbitrary functions,thus exhibiting rich physical structures.We also implore the power series technique to solve part of the complicated differential equa-tions and give valid comments on their results.Later,we outline some applications of our results in ocean physics and mechatronics engineering.展开更多
文摘Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.
文摘New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.
基金Supported by National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF 11076015)
文摘With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10771196 and 10831003the Natural Science Foundation of Zhejiang Province under Grant Nos.Y7080198 and R6090109
文摘In this paper, the (2+ 1)-dimensional soliton equation is mainly being discussed. Based on the Hirota direct method, Wronskian technique and the Pfattlan properties, the N-soliton solution, Wronskian and Grammian solutions have been generated.
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.
文摘The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.
文摘In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions contain the double Jacobi elliptic function-like solutions, the double solitary wave-like solutions, and so on. The method is also powerful to some other nonlinear wave equations in (2+1) dimensions.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16
文摘Abstract By applying the Lie group method, the (2+l)-dimensional soliton equation is reduced to some (1+1)-dimensional nonlinear equations. Based upon some new explicit solutions of the (2+1)-dimensional breaking soliton equation are obtained.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023 the Open Fund under Grant No.BUAASKLSDE-09KF-04l+2 种基金Supported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371070
文摘Starting from a discrete spectral problem, a hierarchy of integrable lattice soliton equations is derived. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure. A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a Biicklund transformation for the resulting integrable lattice equations. At last, conservation laws of the hierarchy are presented.
基金supported by National Natural Science Foundation of China under Grant No. 10272071the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604106
文摘In a recent paper [Commun. Theor. Phys. (Beijing, China) 49 (2008) 268], Huang et al. gave a general variable separation solution to the (2+1)-dimensional breaking soliton equation via a special Biicldund transformation and the variable separation approach. In terms of the derived variable separation solution and by introducing Jacobi elliptic functions, they claimed that nonelastic types of interaction between Jacobi elliptic function waves are investigated both analytically and graphically. We show that some inappropriateness or errors exist in their paper, and say nothing of the conclusion that some nonelastic types of interaction between Jacobi elliptic function waves in the (2+1)-dimensional breaking soliton equation have been found.
基金Supported by the National Natural Science Foundation of China under Grant No.10771207
文摘A hierarchy of nonlinear lattice soliton equations is derived from a new discrete spectral problem. The Hamiltonian structure of the resulting hierarchy is constructed by using a trace identity formula. Moreover, a Darboux transformation is established with the help of gauge transformations of Lax pairs for the typical lattice soliton equations. The exact solutions are given by applying the Darboux transformation.
基金National Key Basic Research Project of China under,国家自然科学基金,教育部留学回国人员科研启动基金
文摘Based on the Weierstrass elliptic function equation, a new Weierstrass semi-rational expansion method and its algorithm are presented. The main idea of the method changes the problem solving soliton equations into another one solving the corresponding set of nonlinear algebraic equations. With the aid of Maple, we choose the modified KdV equation, (2+ 1)-dimensional KP equation, and (3+1)-dimensional Jimbo-Miwa equation to illustrate our algorithm. As a consequence, many types of new doubly periodic solutions are obtained in terms of the Weierstrass elliptic function.Moreover the corresponding new Jacobi elliptic function solutions and solitary wave solutions are also presented as simple limits of doubly periodic solutions.
基金National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+1 种基金Natural Science Foundations of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A61030
文摘By means of the generalized direct method,a relationship is constructed between the new solutions andthe old ones of the (3+1)-dimensional breaking soliton equation.Based on the relationship,a new solution is obtainedby using a given solution of the equation.The symmetry is also obtained for the (3+1)-dimensional breaking solitonequation.By using the equivalent vector of the symmetry,we construct a seven-dimensional symmetry algebra and getthe optimal system of group-invariant solutions.To every case of the optimal system,the (3+1)-dimensional breakingsoliton equation is reduced and some solutions to the reduced equations are obtained.Furthermore,some new explicitsolutions are found for the (3+1)-dimensional breaking soliton equation.
基金the Science Fundation for Young Teachers of Southwest University(No.SWUQ2006028)
文摘Based on the resulting Lax pairs of the generalized coupled KdV soliton equation, a new Darboux transformation with multi-parameters for the generalized coupled KdV soliton equation is derived with the help of a gauge transformation of the spectral problem. By using Darboux transformation, the generalized odd-soliton solutions of the generalized coupled KdV soliton equation are given and presented in determinant form. As an application, the first two cases are given.
基金National Natural Science Foundation of China under Grant No.10272071the Natural Science Foundation of Zhejiang Province under Grant No.Y504111the Scientific Research Foundation of Huzhou University
文摘Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.
文摘A new three-dimensional Lie algebra and its corresponding loop algebra are constructed, from which a modified AKNS soliton-equation hierarchy is obtained.
文摘The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.
基金the North-West University,Mafikeng campus for its continued support.
文摘Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,with applications particularly in ocean physics and mechatronics(electrical electronics and mechanical)engineering.Infinitesimal generators of Lie point symmetries of the equation are computed using Lie group analysis of differen-tial equations.In addition,we construct commutation as well as Lie adjoint representation tables for the nine-dimensional Lie algebra achieved.Further,a one-dimensional optimal system of Lie subalgebras is also presented for the soliton equation.This consequently enables us to generate abundant group-invariant solutions through the reduction of the understudy equation into various ordinary differential equations(ODEs).On solving the achieved nonlinear differential equations,we secure various solitonic solutions.In conse-quence,these solutions containing diverse mathematical functions furnish copious shapes of dynamical wave structures,ranging from periodic,kink and kink-shaped nanopteron,soliton(bright and dark)to breather waves with extensive wave collisions depicted.We physically interpreted the resulting soliton solutions by imploring graphical depictions in three dimensions,two dimensions and density plots.Moreover,the gained group-invariant solutions involved several arbitrary functions,thus exhibiting rich physical structures.We also implore the power series technique to solve part of the complicated differential equa-tions and give valid comments on their results.Later,we outline some applications of our results in ocean physics and mechatronics engineering.