Objective To purify a low-temperature hydroxylamine oxidase (HAO) from a heterotrophic nitrifying bacterium Acinetobacter sp. Y26 and investigate the enzyme property. Methods A HAO was purified by an anion-exchange ...Objective To purify a low-temperature hydroxylamine oxidase (HAO) from a heterotrophic nitrifying bacterium Acinetobacter sp. Y26 and investigate the enzyme property. Methods A HAO was purified by an anion-exchange and gel-filtration chromatography from strain Y16. The purity and molecular mass were determined by RP-HPLC and SDS-PAGE. The HAO activity was detected by monitoring the reduction of potassium ferricyanide using hydroxylamine as substrate and ferricyanide as electron acceptor. The partial amino acid sequence was determined by mass spectrometry. Results The low-temperature HAO with a molecular mass of 61 kDa was purified from strain Y26 by an anion-exchange and gel-filtration chromatography. The enzyme exhibited an ability to oxidize hydroxylamine in wide temperature range (4-40 ℃) in vitro using hydroxylamine as substrate and ferricyanide as electron acceptor. It was stable in the temperature range of 4 to 25 ℃ and pH range of 6.0 to 8.5 with less than 30% change in its activity. The optimal temperature and pH were 15 ℃ and 7.5, respectively. Three peptides were determined by mass spectrometry which were shown to be not identical to other reported HAOs. Conclusion This is the first study to purify a low-temperature HAO from a heterotrophic nitrifier Acinetobecter sp. It differs from other reported HAOs in molecular mass and enzyme properties. The findings of the present study have suggested that the strain Y26 passes through a hydroxylamine-oxidizing process catalyzed by a low-temperature HAO for ammonium removal.展开更多
One of the most important solutions to overcome energy and environmental problems and to replace the fossil fuel-based economy could be the use of photosynthetic microorganisms.The use of photosynthetic microorganisms...One of the most important solutions to overcome energy and environmental problems and to replace the fossil fuel-based economy could be the use of photosynthetic microorganisms.The use of photosynthetic microorganisms is a potential alternative to energy generation from fossil fuels because they efficiently produce hydrogen(H_(2)).Immobilization of photosynthetic microorganisms is used for many biotechnological applications such as H_(2) production.This method appears attractive because it restricts cell movement in an entrapped matrix.Immobilization of Rhodopseudomonas sp.S16-VOGS3 cells is a promising way to improve H_(2) production.In this work,the ability of immobilized Rhodopseudomonas sp.S16-VOGS3 cells to produce H_(2) was investigated in two types of PBRs.The PBRs used in this work were a cylindrical one with 0.2 L working volume(C-PBR)and a flat Roux type with 0.6 L working volume(FRT-PBR).The calcium alginate beads prepared were resistant to culture mixing and showed little leakage of cells,and the immobilized cells continued the photofermentation process in both PBRs.The immobilized cells in the C-PBR produced 936.8 mL of H_(2) with an average H_(2) production rate of 2.99 mL/h.The average productivity was 126.4μL(H_(2))/mg(cells)/h or 14.96 mL(H_(2))/L(culture)/h,and the light conversion efficiency was 2.37%.The immobilized cells in the FRT-PBR produced a total of 662.2 mL of H_(2) with an average H_(2) production rate of 1.55 mL/h.The average productivity was 31.1μL(H_(2))/mg(cells)/h or 2.58 mL(H_(2))/L(culture)/h,and the light conversion efficiency was 0.52%.The more uniform and therefore more efficient degree of bacterial cell mixing achieved in the C-PBR with cylindrical configuration played an important role compared to the FRT-PBR.In the FRT-PBR,the beads were aggregated at the bottom,which limited light penetration and resulted in low H_(2) production efficiency.展开更多
To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-D...To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-DE). The proteomes were compared to determine differentially expressed proteins. A novel alkaliphilic bacterium (alkaliphilic Bacillus sp. N16-5 isolated from Wudunur Soda Lake, China) was isolated in media with five different carbon sources (glucose, mannose, galactose, arabinose, and xylose). Comparative proteome analysis identified 61 differentially expressed proteins, which were mainly involved in carbohydrate metabolism, amino acid transport, and metabolism, as well as energy production and conversion. The comparison was based on the draft genome sequence of strain N16-5. The abundance of enzymes involved in central metabolism was significantly changed when exposed to various carbohydrates. Notably, catabolite control protein A (CcpA) was up-regulated under all carbon sources compared with glucose. In addition, pentose exhibited a stronger effect than hexose in CcpA-mediated carbon catabolite repression. These results provided a fundamental understanding of carbohydrate metabolism in alkaliphiles.展开更多
In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with was...In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH+ -N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH+ -N and organic matter were pH 7.5 〉 pH 8.5 〉 pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and compar- ison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.展开更多
基金supported by grants from National Natural Science Foundation of China(51078106)Heilongjiang Provincial Science Foundation for Distinguished Youth Scholar(JC200708)Heilongjiang Provincial Finance Foundation for Basic Sciences(CZ12BZSM06)
文摘Objective To purify a low-temperature hydroxylamine oxidase (HAO) from a heterotrophic nitrifying bacterium Acinetobacter sp. Y26 and investigate the enzyme property. Methods A HAO was purified by an anion-exchange and gel-filtration chromatography from strain Y16. The purity and molecular mass were determined by RP-HPLC and SDS-PAGE. The HAO activity was detected by monitoring the reduction of potassium ferricyanide using hydroxylamine as substrate and ferricyanide as electron acceptor. The partial amino acid sequence was determined by mass spectrometry. Results The low-temperature HAO with a molecular mass of 61 kDa was purified from strain Y26 by an anion-exchange and gel-filtration chromatography. The enzyme exhibited an ability to oxidize hydroxylamine in wide temperature range (4-40 ℃) in vitro using hydroxylamine as substrate and ferricyanide as electron acceptor. It was stable in the temperature range of 4 to 25 ℃ and pH range of 6.0 to 8.5 with less than 30% change in its activity. The optimal temperature and pH were 15 ℃ and 7.5, respectively. Three peptides were determined by mass spectrometry which were shown to be not identical to other reported HAOs. Conclusion This is the first study to purify a low-temperature HAO from a heterotrophic nitrifier Acinetobecter sp. It differs from other reported HAOs in molecular mass and enzyme properties. The findings of the present study have suggested that the strain Y26 passes through a hydroxylamine-oxidizing process catalyzed by a low-temperature HAO for ammonium removal.
基金supported by European Union's Horizon Europe-the Framework Programme for Research and Innovation[grant number 101093150]project LIBRA(Light Based Multisensing Device for Screening of Pathogens and Nutrients in Bioreactors)。
文摘One of the most important solutions to overcome energy and environmental problems and to replace the fossil fuel-based economy could be the use of photosynthetic microorganisms.The use of photosynthetic microorganisms is a potential alternative to energy generation from fossil fuels because they efficiently produce hydrogen(H_(2)).Immobilization of photosynthetic microorganisms is used for many biotechnological applications such as H_(2) production.This method appears attractive because it restricts cell movement in an entrapped matrix.Immobilization of Rhodopseudomonas sp.S16-VOGS3 cells is a promising way to improve H_(2) production.In this work,the ability of immobilized Rhodopseudomonas sp.S16-VOGS3 cells to produce H_(2) was investigated in two types of PBRs.The PBRs used in this work were a cylindrical one with 0.2 L working volume(C-PBR)and a flat Roux type with 0.6 L working volume(FRT-PBR).The calcium alginate beads prepared were resistant to culture mixing and showed little leakage of cells,and the immobilized cells continued the photofermentation process in both PBRs.The immobilized cells in the C-PBR produced 936.8 mL of H_(2) with an average H_(2) production rate of 2.99 mL/h.The average productivity was 126.4μL(H_(2))/mg(cells)/h or 14.96 mL(H_(2))/L(culture)/h,and the light conversion efficiency was 2.37%.The immobilized cells in the FRT-PBR produced a total of 662.2 mL of H_(2) with an average H_(2) production rate of 1.55 mL/h.The average productivity was 31.1μL(H_(2))/mg(cells)/h or 2.58 mL(H_(2))/L(culture)/h,and the light conversion efficiency was 0.52%.The more uniform and therefore more efficient degree of bacterial cell mixing achieved in the C-PBR with cylindrical configuration played an important role compared to the FRT-PBR.In the FRT-PBR,the beads were aggregated at the bottom,which limited light penetration and resulted in low H_(2) production efficiency.
基金supported by the National Basic Research Program of China, Ministry of Science and Technology of China (Grant Nos. 2007CB707801 and 2003CB716001)the National High Technology Research and Development Program of China (Grant Nos. 2006AA020201 and 2007AA021306)
文摘To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-DE). The proteomes were compared to determine differentially expressed proteins. A novel alkaliphilic bacterium (alkaliphilic Bacillus sp. N16-5 isolated from Wudunur Soda Lake, China) was isolated in media with five different carbon sources (glucose, mannose, galactose, arabinose, and xylose). Comparative proteome analysis identified 61 differentially expressed proteins, which were mainly involved in carbohydrate metabolism, amino acid transport, and metabolism, as well as energy production and conversion. The comparison was based on the draft genome sequence of strain N16-5. The abundance of enzymes involved in central metabolism was significantly changed when exposed to various carbohydrates. Notably, catabolite control protein A (CcpA) was up-regulated under all carbon sources compared with glucose. In addition, pentose exhibited a stronger effect than hexose in CcpA-mediated carbon catabolite repression. These results provided a fundamental understanding of carbohydrate metabolism in alkaliphiles.
文摘In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH+ -N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH+ -N and organic matter were pH 7.5 〉 pH 8.5 〉 pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and compar- ison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.