In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider...One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
The current underwater terrain surface matching algorithm,which uses Hu moment as the similarity index,cannot gain accurate location due to the algorithm’s disadvantage in detecting slight differences.To solve this p...The current underwater terrain surface matching algorithm,which uses Hu moment as the similarity index,cannot gain accurate location due to the algorithm’s disadvantage in detecting slight differences.To solve this problem,a line-surface integrated terrain matching algorithm is presented.First,the similarity evaluation method of the traditional Terrain Contour Matching(TERCOM)algorithm is improved,and the strategy used to select the matching regions is developed.Then,a surface matching algorithm based on the geometric similarity is established to determine the optimum match between the reference maps and the actual measured terrains.Finally,a means of“line matching algorithm”and“surface matching algorithm”integration is proposed based on a fixed threshold.The experimental results show that the proposed algorithm can obtain a more accurate location and has greater robustness than that of the surface underwater matching algorithm based on Hu moment.展开更多
The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is...The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is necessary to design effective detection approaches for the defects in order to ensure the reliability of wafer.In this paper,a new method based on image boundary extraction is presented for the detection of defects on a wafer.The method uses island model genetic algorithms to perform the segmentation of wafer images,and gets the optimal threshold values.The island model genetic algorithm uses two distinct subpopulations,it is a coarse grain parallel model.The individuals migration can occur between the two subpopulations to share genetic materials.A lot of experimental results show that the defect detection method proposed in this paper can obtain the features of defects effectively.展开更多
In the analysis of the system of anchoring bar and wall rock in small strain and longitudinal vibration dynamic response, the influence of the cement grouting as well as the rock layer on the anchor bar can be evaluat...In the analysis of the system of anchoring bar and wall rock in small strain and longitudinal vibration dynamic response, the influence of the cement grouting as well as the rock layer on the anchor bar can be evaluated as the two kinds of parameters: the dynamic stiffness and the damp, which are the vital reference of the anchorage quality. Based on the analytic solution to the dynamic equation of the integrated anchor bar, the new approach which combines genetic algorithm and the toolbox of Matlab is applied to solve the problem of multi-parameters reverse deduction for integrated anchorage system in dynamic testing. Using the traits of the self-organizing, self-adapting and the fast convergence speed of the genetic algorithm, the optimum of all possible solutions to dynamic parameters is obtained by calculating the project instances. Examples show that the method presented in this paper is effective and reliable.展开更多
We established an integrated and optimized model of vehicle scheduling problem and vehicle filling problem for solving an extremely complex delivery mode-multi-type vehicles, non-full loads, pickup and delivery in log...We established an integrated and optimized model of vehicle scheduling problem and vehicle filling problem for solving an extremely complex delivery mode-multi-type vehicles, non-full loads, pickup and delivery in logistics and delivery system. The integrated and optimized model is based on our previous research result-effective space method. An integrated algorithm suitable for the integrated and optimized model was proposed and corresponding computer programs were designed to solve practical problems. The results indicates the programs can work out optimized delivery routes and concrete loading projects. The model and algorithm have many virtues and are valuable in practice.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop...Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop new technologies to improve the validity of handoff algorithms.Intelligent and optimized handoff algorithms in hybrid networks that integrate Ad hoc and mobile cellular systems are well-adaptive and robust.They are able to implement handoffs adaptively,according to specific multi-factors such as different Quality of Service(QoS)requirements,network states and mobile node conditions in the future hybrid networks.Therefore,these intelligent and optimized algorithms can make more effective handover decision,and accordingly improve the system’s performance.The future research will tackle intelligent or optimized vertical handoff algorithms for integrated Ad hoc and mobile cellular networks to improve their whole system performance.展开更多
In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise ...In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved.展开更多
According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are ...According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.展开更多
Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical app...Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.展开更多
An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear...An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.展开更多
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec...This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.展开更多
In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and ...In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well.展开更多
The use of GPS is becoming increasingly popular for real-time navigation systems. To ensure that satellite failures are detected and excluded at the receiver is of high importance for the integrity of the satellite na...The use of GPS is becoming increasingly popular for real-time navigation systems. To ensure that satellite failures are detected and excluded at the receiver is of high importance for the integrity of the satellite navigation system. The focus of this paper is to implement a fault detection and exclusion algorithm in a software GPS receiver in order to provide timely warnings to the user when it is not advisable to use the GPS system for navigation. The GPS system currently provides some basic integrity information to users via the navigation message, but it is not timely enough for safety-critical applications. RAIM is a means of providing integrity with the capability of detecting when a satellite failure or a measurement error has occurred. It is the simplest and most cost effective technique for integrity monitoring. After applying the iterative fault detection and the exclusion algorithm, a significant improvement in positioning accuracy is achieved.展开更多
A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is ...A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.展开更多
In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in inte...In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in intelligent manufacturing job shop environment was studied. The dual-resource integrated scheduling model of AGV and machine was established by comprehensively considering constraints of machines, workpieces and AGVs. The bidirectional single path fixed guidance system based on topological map was determined, and the AGV transportation task model was defined. The improved A* path optimization algorithm was used to determine the optimal path, and the path conflict elimination mechanism was described. The improved NSGA-Ⅱ algorithm was used to determine the machining workpiece sequence, and the competition mechanism was introduced to allocate AGV transportation tasks. The proposed model and method were verified by a workshop production example, the results showed that the dual resource integrated scheduling strategy of AGV and machine is effective.展开更多
Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroa...Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroarray data was presented, by combined with evidence acquired from comparative genornic hybridization (CGH) data. Methods: Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify ted genes in CRC. Results: A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions- Our results demonstrated that integration analysis is an effective strategy for mining cancer- associated genes.展开更多
The impact of the difference between Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) in breast radiotherapy is not clearly due to different uses and further research is required to explain this effect. The ...The impact of the difference between Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) in breast radiotherapy is not clearly due to different uses and further research is required to explain this effect. The aim of this study is to investigate the contribution of calculation differences between AAA and AXB to the integral radiation dose (ID) on critical organs. Seven field intensity modulated radiotherapy (IMRT) plans were generated using with AAA and AXB algorithms for twenty patients with early stage left breast cancer after breast conserving surgery. Volumetric and dosimetric differences, as well as, the Dmean, V5, V20 doses of the left and right-sided lung, the Dmean, V10, V20, V30 doses of heart and the Dmean, V5, V10 doses of the contralateral breast were investigated. The mean dose (Dmean), V5, V20 doses of the left-sided lung, the Dmean, V5, V10 doses of right-sided lung, the Dmean, V10, V20, V30 doses of heart and the Dmean, V5, V10 doses of the contralateral breast were found to be significantly higher with AAA. In this research integral dose was also higher in the AAA recalculated plan and the AXB plan with the average dose as follows left lung 2%, heart 2%, contralateral breast 8%, contralateral lung 4% respectively. Our study revealed that the calculation differences between Acuros XB (AXB) and Anisotropic Analytical Algorithm (AAA) in breast radiotherapy caused serious differences on the stored integral doses on critical organs. In addition, AXB plans showed significantly dosimetric improvements in multiple dosimetric parameters.展开更多
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry under Grant No.2010-2011 and Chinese Post-doctoral Research Foundation
文摘One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金The National Nature Science Foundation of China(Nos.414713804160149841774014)。
文摘The current underwater terrain surface matching algorithm,which uses Hu moment as the similarity index,cannot gain accurate location due to the algorithm’s disadvantage in detecting slight differences.To solve this problem,a line-surface integrated terrain matching algorithm is presented.First,the similarity evaluation method of the traditional Terrain Contour Matching(TERCOM)algorithm is improved,and the strategy used to select the matching regions is developed.Then,a surface matching algorithm based on the geometric similarity is established to determine the optimum match between the reference maps and the actual measured terrains.Finally,a means of“line matching algorithm”and“surface matching algorithm”integration is proposed based on a fixed threshold.The experimental results show that the proposed algorithm can obtain a more accurate location and has greater robustness than that of the surface underwater matching algorithm based on Hu moment.
基金supported by Guangdong Provincial Natural Science Foundation of China (7005833)
文摘The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is necessary to design effective detection approaches for the defects in order to ensure the reliability of wafer.In this paper,a new method based on image boundary extraction is presented for the detection of defects on a wafer.The method uses island model genetic algorithms to perform the segmentation of wafer images,and gets the optimal threshold values.The island model genetic algorithm uses two distinct subpopulations,it is a coarse grain parallel model.The individuals migration can occur between the two subpopulations to share genetic materials.A lot of experimental results show that the defect detection method proposed in this paper can obtain the features of defects effectively.
基金Funded by the Natural Science Foundation of China (50378096) and Key Technology Item of Education Ministry (03138).
文摘In the analysis of the system of anchoring bar and wall rock in small strain and longitudinal vibration dynamic response, the influence of the cement grouting as well as the rock layer on the anchor bar can be evaluated as the two kinds of parameters: the dynamic stiffness and the damp, which are the vital reference of the anchorage quality. Based on the analytic solution to the dynamic equation of the integrated anchor bar, the new approach which combines genetic algorithm and the toolbox of Matlab is applied to solve the problem of multi-parameters reverse deduction for integrated anchorage system in dynamic testing. Using the traits of the self-organizing, self-adapting and the fast convergence speed of the genetic algorithm, the optimum of all possible solutions to dynamic parameters is obtained by calculating the project instances. Examples show that the method presented in this paper is effective and reliable.
基金the Natural Science Foundation of China (No. 70572028).
文摘We established an integrated and optimized model of vehicle scheduling problem and vehicle filling problem for solving an extremely complex delivery mode-multi-type vehicles, non-full loads, pickup and delivery in logistics and delivery system. The integrated and optimized model is based on our previous research result-effective space method. An integrated algorithm suitable for the integrated and optimized model was proposed and corresponding computer programs were designed to solve practical problems. The results indicates the programs can work out optimized delivery routes and concrete loading projects. The model and algorithm have many virtues and are valuable in practice.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
基金This work was funded by the High- tech Research and Development Program of China (863 Program) under Grant 2006AA01Z208.
文摘Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop new technologies to improve the validity of handoff algorithms.Intelligent and optimized handoff algorithms in hybrid networks that integrate Ad hoc and mobile cellular systems are well-adaptive and robust.They are able to implement handoffs adaptively,according to specific multi-factors such as different Quality of Service(QoS)requirements,network states and mobile node conditions in the future hybrid networks.Therefore,these intelligent and optimized algorithms can make more effective handover decision,and accordingly improve the system’s performance.The future research will tackle intelligent or optimized vertical handoff algorithms for integrated Ad hoc and mobile cellular networks to improve their whole system performance.
文摘In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved.
文摘According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.
基金supported by the National Natural Science Foundation of China (60879024)
文摘Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.
基金Scientific Research Fund of the Institute of Engineering Mechanics,CEA under Grant Nos.2017A02,2016B09 and 2016A06the National Science-technology Support Plan Projects under Grant No.2015BAK17B02the National Natural Science Foundation of China under Grant Nos.51378478,51408565,51678538 and 51161120360
文摘An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.
文摘This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.
基金supported by the Science Challenge Project(TZ2018007)the National Natural Science Foundation of China(71671009+2 种基金 61871013 61573041 61573043)
文摘In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well.
文摘The use of GPS is becoming increasingly popular for real-time navigation systems. To ensure that satellite failures are detected and excluded at the receiver is of high importance for the integrity of the satellite navigation system. The focus of this paper is to implement a fault detection and exclusion algorithm in a software GPS receiver in order to provide timely warnings to the user when it is not advisable to use the GPS system for navigation. The GPS system currently provides some basic integrity information to users via the navigation message, but it is not timely enough for safety-critical applications. RAIM is a means of providing integrity with the capability of detecting when a satellite failure or a measurement error has occurred. It is the simplest and most cost effective technique for integrity monitoring. After applying the iterative fault detection and the exclusion algorithm, a significant improvement in positioning accuracy is achieved.
基金supported by the National Outstanding Young Scientists Fund of China (No. 10725209)the National ScienceFoundation of China (No. 10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project (No. 07ZZ07)Shanghai Leading Academic Discipline Project (No. Y0103).
文摘A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.
基金Project(BK20201162)supported by the General Program of Natural Science Foundation of Jiangsu Province,ChinaProject(JC2019126)supported by the Science and Technology Plan Fundamental Scientific Research Funding Project of Nantong,China+1 种基金Project(CE20205045)supported by the Changzhou Science and Technology Support Plan(Social Development),ChinaProject(51875171)supported by the National Nature Science Foundation of China。
文摘In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in intelligent manufacturing job shop environment was studied. The dual-resource integrated scheduling model of AGV and machine was established by comprehensively considering constraints of machines, workpieces and AGVs. The bidirectional single path fixed guidance system based on topological map was determined, and the AGV transportation task model was defined. The improved A* path optimization algorithm was used to determine the optimal path, and the path conflict elimination mechanism was described. The improved NSGA-Ⅱ algorithm was used to determine the machining workpiece sequence, and the competition mechanism was introduced to allocate AGV transportation tasks. The proposed model and method were verified by a workshop production example, the results showed that the dual resource integrated scheduling strategy of AGV and machine is effective.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.61373057)a grant from the Zhejiang Provincial Natural Science Foundation of China(Grant No.Y1110763)
文摘Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroarray data was presented, by combined with evidence acquired from comparative genornic hybridization (CGH) data. Methods: Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify ted genes in CRC. Results: A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions- Our results demonstrated that integration analysis is an effective strategy for mining cancer- associated genes.
文摘The impact of the difference between Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) in breast radiotherapy is not clearly due to different uses and further research is required to explain this effect. The aim of this study is to investigate the contribution of calculation differences between AAA and AXB to the integral radiation dose (ID) on critical organs. Seven field intensity modulated radiotherapy (IMRT) plans were generated using with AAA and AXB algorithms for twenty patients with early stage left breast cancer after breast conserving surgery. Volumetric and dosimetric differences, as well as, the Dmean, V5, V20 doses of the left and right-sided lung, the Dmean, V10, V20, V30 doses of heart and the Dmean, V5, V10 doses of the contralateral breast were investigated. The mean dose (Dmean), V5, V20 doses of the left-sided lung, the Dmean, V5, V10 doses of right-sided lung, the Dmean, V10, V20, V30 doses of heart and the Dmean, V5, V10 doses of the contralateral breast were found to be significantly higher with AAA. In this research integral dose was also higher in the AAA recalculated plan and the AXB plan with the average dose as follows left lung 2%, heart 2%, contralateral breast 8%, contralateral lung 4% respectively. Our study revealed that the calculation differences between Acuros XB (AXB) and Anisotropic Analytical Algorithm (AAA) in breast radiotherapy caused serious differences on the stored integral doses on critical organs. In addition, AXB plans showed significantly dosimetric improvements in multiple dosimetric parameters.