A method involving Headspace solid-phase microextraction (HS-SPME) fiber combined with gas chromatography (GC) coupled with flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) was de...A method involving Headspace solid-phase microextraction (HS-SPME) fiber combined with gas chromatography (GC) coupled with flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) was developed and optimized to investigate volatile organic compounds (VOCs) from different tissues (flowers, leaves, stems, rhizosphere and whole plants) of Floribunda and Hybrid Tea roses (intact and cut). Three-phase fiber 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) was used. Two types of chambers (Tedlar bag and glass jar) were evaluated for collection of VOCs and glass jar was selected. Absorbed compounds on the fiber were completely desorbed in the GC injector port at three desorption times (5, 10 and 15 min), and 5 min at 250?C was used. The maximum extraction efficiency for flowers tissues (equilibrium absorption) was achieved 2 h after fiber exposure in the headspace for intact and cut Floribunda and Hybrid Tea flowers. Under the optimized HS-SPME and GC-FID/MS conditions, 1h extraction time was chosen for intact and cut Floribunda and Hybrid Tea leaves and stems. The results demonstrated that 5 cm depth was selected for root and soil part (rhizosphere) for both rose cultivars, and 6 h and 12 h extraction time of VOCs from rhizosphere was achieved for Floribunda and Hybrid Tea, respectively. One hour was chosen for VOCs released from whole rose plants for both cultivars. In this study, the VOC profiles of two rose cultivars were characterized by the optimized HS-SPME-GC method. The different tissues of rose plants gave wide range of the VOCs;also the chromatograms of different cultivars were quite different and the specific VOC pattern of rose types depends on the species. Results from this study demonstrate the feasibility of this method for identifying VOCs from two rose cultivars and the potential use of this method for physiological studies on rose plants or on other floriculture plants.展开更多
An optimum method has been developed for extracting volatile organic compounds (VOCs) which contribute to the aroma of different species of citrus fruit (orange, lemon, lime, and mandarin). Headspace solid phase micro...An optimum method has been developed for extracting volatile organic compounds (VOCs) which contribute to the aroma of different species of citrus fruit (orange, lemon, lime, and mandarin). Headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled with flame ionization detection (FID) is used as a very simple, efficient and non-destructive extraction method. A three phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing time for volatiles reaching equilibrium from whole fruit in the headspace of the chamber was 20, 16, 8 and 16 hours for lemon, lime, mandarin, and orange respectively. Optimum fibre exposure times for whole fruit were 2, 4, 2 and 2 hours for lemon, lime, mandarin, and orange respectively. Three chamber volumes (500, 1000 and 2000 ml) were evaluated for the collection of VOCs with the 500 ml chamber being selected. The 500ml chamber produced the highest quality peak areas and quantity of extracted volatiles. As a result of fruit respiration, the percentage of oxygen (O2) of all citrus fruit species in 500 ml chamber decreased from 21.8% to 18.8% in the 20 hours sealing time, while carbon dioxide (CO2) contents increased to 2.9% also in the 20 hours sealing time. The results of this study showed the feasibility of this technique for identifying VOCs from four of the citrus fruit species and its potential as a routine method for physiological studies on citrus fruit or on other fruit species.展开更多
Despite the worldwide increase in the consumption of PET-bottled mineral waters compared to tap waters encouraged by its microbiological and chemical safety for public health, contaminants could migrate from the plast...Despite the worldwide increase in the consumption of PET-bottled mineral waters compared to tap waters encouraged by its microbiological and chemical safety for public health, contaminants could migrate from the plastic packaging into the water and induce adverse effects on human health. Volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, ortho, meta, and para-xylenes (BTEX), styrene, chlorobenzene and benzaldehyde are among the potential contaminants of bottled waters. This study aimed to assess Lebanese PET-bottled waters, in respect of VOCs contents, with comparison to polycarbonate-bottled and tap waters. Both HS-SPME-GC/FID and SPE-GC/FID were optimized and validated for VOCs determination in the waters, and their performances were compared. The HS-SPME-GC/FID was valid (Afnor NF T 90-210 (May 2009)) for all the studied molecules with limits of quantifications (LOQ) far lower the maximum contaminants levels (MCLs) set by both US-EPA and WHO. SPE-GC/FID was valid only for ethylbenzene, m/p-xylenes, o-xylene, and styrene, with poorer LOQs. HS-SPME-GC/FID was used therefore for VOCs monitoring in studied water samples showing the safety of the Lebanese bottled-water. The effects of bottles storage conditions (time, and exposure to sunlight) on VOCs migration were also studied.展开更多
文摘A method involving Headspace solid-phase microextraction (HS-SPME) fiber combined with gas chromatography (GC) coupled with flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) was developed and optimized to investigate volatile organic compounds (VOCs) from different tissues (flowers, leaves, stems, rhizosphere and whole plants) of Floribunda and Hybrid Tea roses (intact and cut). Three-phase fiber 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) was used. Two types of chambers (Tedlar bag and glass jar) were evaluated for collection of VOCs and glass jar was selected. Absorbed compounds on the fiber were completely desorbed in the GC injector port at three desorption times (5, 10 and 15 min), and 5 min at 250?C was used. The maximum extraction efficiency for flowers tissues (equilibrium absorption) was achieved 2 h after fiber exposure in the headspace for intact and cut Floribunda and Hybrid Tea flowers. Under the optimized HS-SPME and GC-FID/MS conditions, 1h extraction time was chosen for intact and cut Floribunda and Hybrid Tea leaves and stems. The results demonstrated that 5 cm depth was selected for root and soil part (rhizosphere) for both rose cultivars, and 6 h and 12 h extraction time of VOCs from rhizosphere was achieved for Floribunda and Hybrid Tea, respectively. One hour was chosen for VOCs released from whole rose plants for both cultivars. In this study, the VOC profiles of two rose cultivars were characterized by the optimized HS-SPME-GC method. The different tissues of rose plants gave wide range of the VOCs;also the chromatograms of different cultivars were quite different and the specific VOC pattern of rose types depends on the species. Results from this study demonstrate the feasibility of this method for identifying VOCs from two rose cultivars and the potential use of this method for physiological studies on rose plants or on other floriculture plants.
文摘An optimum method has been developed for extracting volatile organic compounds (VOCs) which contribute to the aroma of different species of citrus fruit (orange, lemon, lime, and mandarin). Headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled with flame ionization detection (FID) is used as a very simple, efficient and non-destructive extraction method. A three phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing time for volatiles reaching equilibrium from whole fruit in the headspace of the chamber was 20, 16, 8 and 16 hours for lemon, lime, mandarin, and orange respectively. Optimum fibre exposure times for whole fruit were 2, 4, 2 and 2 hours for lemon, lime, mandarin, and orange respectively. Three chamber volumes (500, 1000 and 2000 ml) were evaluated for the collection of VOCs with the 500 ml chamber being selected. The 500ml chamber produced the highest quality peak areas and quantity of extracted volatiles. As a result of fruit respiration, the percentage of oxygen (O2) of all citrus fruit species in 500 ml chamber decreased from 21.8% to 18.8% in the 20 hours sealing time, while carbon dioxide (CO2) contents increased to 2.9% also in the 20 hours sealing time. The results of this study showed the feasibility of this technique for identifying VOCs from four of the citrus fruit species and its potential as a routine method for physiological studies on citrus fruit or on other fruit species.
文摘Despite the worldwide increase in the consumption of PET-bottled mineral waters compared to tap waters encouraged by its microbiological and chemical safety for public health, contaminants could migrate from the plastic packaging into the water and induce adverse effects on human health. Volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, ortho, meta, and para-xylenes (BTEX), styrene, chlorobenzene and benzaldehyde are among the potential contaminants of bottled waters. This study aimed to assess Lebanese PET-bottled waters, in respect of VOCs contents, with comparison to polycarbonate-bottled and tap waters. Both HS-SPME-GC/FID and SPE-GC/FID were optimized and validated for VOCs determination in the waters, and their performances were compared. The HS-SPME-GC/FID was valid (Afnor NF T 90-210 (May 2009)) for all the studied molecules with limits of quantifications (LOQ) far lower the maximum contaminants levels (MCLs) set by both US-EPA and WHO. SPE-GC/FID was valid only for ethylbenzene, m/p-xylenes, o-xylene, and styrene, with poorer LOQs. HS-SPME-GC/FID was used therefore for VOCs monitoring in studied water samples showing the safety of the Lebanese bottled-water. The effects of bottles storage conditions (time, and exposure to sunlight) on VOCs migration were also studied.