Friction self-piercing riveting(F-SPR)process based on a pip die has been invented to solve the cracking problems in riveting high-strength and low-ductility light metals,such as magnesium alloys,cast aluminum,and 7 s...Friction self-piercing riveting(F-SPR)process based on a pip die has been invented to solve the cracking problems in riveting high-strength and low-ductility light metals,such as magnesium alloys,cast aluminum,and 7 series aluminum alloys.In this paper,in order to solve quality issues caused by the misalignment between rivet and pip-die in F-SPR,a flat-die based F-SPR process was proposed and employed to join 1.27 mm-thick AA6061-T6 to 3 mm-thick AZ31B.The results indicate that a 1.0 mm die distance is effective to avoid rivet upset and insufficient flaring.As the feed rate increases,the heat input in the whole process decreases,resulting in a larger riveting force,which in turn increases both the bottom thickness and interlock amount.Besides,solid-state bonding,including Al-Mg intermetallic compounds(IMCs),Al-Mg mechanical mixture,and Al-Fe atom interdiffusion was observed at the joint interfaces.The upper Al layer was softened,but the lower Mg layer was hardened,and both sheets exhibited a narrowed affected region with the increase of feed rate,while the rivet hardness shows no obvious change.Three fracture modes appeared accompanying the variations in lap-shear strength and energy absorption as the feed rate increased from 2 mm/s to 8 mm/s.Finally,the F-SPR process using a flat die was compared to those using a pip die and a flat bottom die to show the advantage of flat die on coping with the misalignment problem.展开更多
Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has becom...Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has become increasingly popular mainly due to the growing use of lightweight materials in transportation applications.However,SPR joining of these advanced light materials remains a challenge as these materials often lack a good combination of high strength and ductility to resist the large plastic deformation induced by the SPR process.In this paper,SPR joints of advanced materials and their corresponding failure mechanisms are discussed,aiming to provide the foundation for future improvement of SPR joint quality.This paper is divided into three major sections:1)joint failures focusing on joint defects originated from the SPR process and joint failure modes under different mechanical loading conditions,2)joint corrosion issues,and 3)joint optimisation via process parameters and advanced techniques.展开更多
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ...A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。展开更多
In this paper,self-piercing riveting(SPR)and friction self-piercing riveting(F-SPR)processes were employed to join aluminum alloy AA5182-O sheets.Parallel studies were carried out to compare the two processes in terms...In this paper,self-piercing riveting(SPR)and friction self-piercing riveting(F-SPR)processes were employed to join aluminum alloy AA5182-O sheets.Parallel studies were carried out to compare the two processes in terms of joint macrogeometry,tooling force,microhardness,quasi-static mechanical performance,and fatigue behavior.The results indicate that the F-SPR process formed both rivet–sheet interlocking and sheet–sheet solid-state bonding,whereas the SPR process only contained rivet–sheet interlocking.For the same rivet flaring,the F-SPR process required 63%less tooling force than the SPR process because of the softening effect of frictional heat and the lower rivet hardness of F-SPR.The decrease in the switch depth of the F-SPR resulted in more hardening of the aluminum alloy surrounding the rivet.The higher hardness of aluminum and formation of solid-state bonding enhanced the F-SPR joint stiffness under lap-shear loading,which contributed to the higher quasi-static lap-shear strength and longer fatigue life compared to those of the SPR joints.展开更多
Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension stren...Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension strength of SPR joints was proposed on the basis of finite element(FE)simulation and extreme gradient boosting decision tree(XGBoost)algorithm.An FE model of SPR process was established to simulate the plastic deformations of rivet and substrate materials and verified in terms of cross-sectional dimensions of SPR joints.The residual mechanical field from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints,and cross-tension strengths from FE simulation show a good consistence with the experiment result.Based on the verified FE model,the mechanical properties and thickness of substrate materials were varied and then used for FE simulation to obtain cross-tension strengths of a number of SPR joints,which were used to train the regression model based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints.Results show that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regression model with a respective error less than 7.6%compared to experimental values.展开更多
The application of magnesium alloys to automobiles is increasing due to their superior specific strength and specific stiffness.In this study,an upper sheet of AZ31 magnesium alloy and a lower sheet of cold-rolled ste...The application of magnesium alloys to automobiles is increasing due to their superior specific strength and specific stiffness.In this study,an upper sheet of AZ31 magnesium alloy and a lower sheet of cold-rolled steel were joined by self-piercing riveting(SPR),a method commonly used to join automotive panels.A cross-shaped specimen was fabricated with a punching force of 35 kN,which exhibited the best joint strength for the SPR joint specimen geometry.Monotonic and fatigue strengths were evaluated using cross-shaped specimens at loading angles of 0°,45°,and 90°.The load amplitude corresponding to the fatigue endurance limit was assumed to be at 106 cycles,and the fatigue ratios(=fatigue endurance limit/static strength)at the loading angles of 0°,45°,and 90°are 22%,13%,and 9%,respectively.For all three loading angle specimens,fatigue cracks initiated at the triple point where the rivet shank,the upper sheet and the lower sheet are in contact with each other,with the cracks propagating through the thickness of the upper sheet and ultimately leading to fracture.The fatigue lifetimes were evaluated through the von-Mises stress,maximum principal stress,and equivalent stress intensity factor.It was found that the fatigue lifetimes could be evaluated most appropriately through the maximum principal stress.展开更多
Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load...Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load and mechanical interlock distance increased. Ultrafine grains were formed at the joint in AZ31B as a result of dynamic recrystallization, which contributed to the higher hardness. Fatigue life of the CFRP-AZ31B joint was studied at various peak loads of 0.5, 1, 2, and 3 kN and compared with the resistance spot welded AZ31B-AZ31B from the open literature. The fatigue performance was better at higher peak load(>2 kN) and comparable to that of resistance spot welding of AZ31B to AZ31B at lower peak loads(<1 kN). From fractography, the crack initiation for lower peak load(<1 kN) case was observed at the fretting positions on the top and bottom surfaces of AZ31B sheet. When peak load was increased, fretting between the rivet and the top of AZ31B became more dominant to initiate a crack during fatigue testing.展开更多
This paper presents a new machine learning-based calibration framework for strength simulation models of self-piercing riveted(SPR)joints.Strength simulations were conducted through the integrated modeling of SPR join...This paper presents a new machine learning-based calibration framework for strength simulation models of self-piercing riveted(SPR)joints.Strength simulations were conducted through the integrated modeling of SPR joints from process to performance,while physical quasi-static tensile tests were performed on combinations of DP600 high-strength steel and 5754 aluminum alloy sheets under lap-shear loading conditions.A sensitivity study of the critical simulation parameters(e.g.,friction coefficient and scaling factor)was conducted using the controlled variables method and Sobol sensitivity analysis for feature selection.Subsequently,machine-learning-based surrogate models were used to train and accurately represent the mapping between the detailed joint profile and its load-displacement curve.Calibration of the simulation model is defined as a dual-objective optimization task to minimize errors in key load displacement features between simulations and experiments.A multi-objective genetic algorithm(MOGA)was chosen for optimization.The three combinations of SPR joints illustrated the effectiveness of the proposed framework,and good agreement was achieved between the calibrated models and experiments.展开更多
In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR join...In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR joints has received considerable attention.Therefore,this study proposes a data-driven approach to predict the fatigue life and failure modes of SPR joints.The dataset comprises three specimen types:cross-tensile,cross-peel,and tensile-shear.To ensure data consistency,a finite element analysis was employed to convert the external loads of the different specimens.Feature selection was implemented using various machine-learning algorithms to determine the model input.The Gaussian process regression algorithm was used to predict fatigue life,and its performance was compared with different kernel functions commonly used in the field.The results revealed that the Matern kernel exhibited an exceptional predictive capability for fatigue life.Among the data points,95.9%fell within the 3-fold error band,and the remaining 4.1%exceeded the 3-fold error band owing to inherent dispersion in the fatigue data.To predict the failure location,various tree and artificial neural network(ANN)models were compared.The findings indicated that the ANN models slightly outperformed the tree models.The ANN model accurately predicts the failure of joints with varying dimensions and materials.However,minor deviations were observed for the joints with the same sheet.Overall,this data-driven approach provided a reliable predictive model for estimating the fatigue life and failure location of SPR joints.展开更多
As more and more composite materials are used in lightweight vehicle white bodies,self-pierce riveting(SPR)technology has attracted great attention.However,the existing riveting tools still have the disadvantages of l...As more and more composite materials are used in lightweight vehicle white bodies,self-pierce riveting(SPR)technology has attracted great attention.However,the existing riveting tools still have the disadvantages of low efficiency and flexibility.To improve these disadvantages and the riveting qualification rate,this paper improves the control scheme of the existing riveting tools,and proposes a novel controller design approach of the flexible servo riveting system based on the RBF network and SPR process.Firstly,this paper briefly introduces the working principle and SPR procedure of the servo riveting tool.Then a moving component force analysis is performed,which lays the foundation for the motion control.Secondly,the riveting quality inspection rules of traditional riveting tools are used for reference to plan the force-displacement curve autonomously.To control this process,the riveting force is fed back into the closed-loop control of the riveting tool and the riveting speed is computed based on the admittance control algorithm.Then,this paper adopts the permanent magnet synchronous motor(PMSM)as the power of riveting tool,and proposes an integral sliding mode control approach based on the improved reaching law and the radial basis function(RBF)network friction compensation for the PMSM speed control.Finally,the proposed control approach is simulated by Matlab,and is applied to the servo riveting system designed by our laboratory.The simulation and riveting results show the feasibility of the designed controller.展开更多
The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies...The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies were investigated both experimentally and numerically. Lap shear tests were conducted under quasistatic conditions to evaluate the load-carrying capability of these SPR joints. The effect of variation in die geometry (such as variation in the die groove shape, cone height, and die radius) on the main mechanical response of the joints, namely the peak load and energy absorption, was discussed. The results showed that SPR joints produced with the conical-section dies exhibited a failure mode similar to those produced with a conventional die. All the joints failed by tearing of the top steel sheet. Cracks that occurred in the bottom aluminum alloy 6061-T6 sheet around the rivet leg were a result of tangential tensile stress. The cone height of a conical-section die is the most important parameter affecting the surface quality of Al/steel SPR joints. Conical-section dies with a moderate convex can ensure a good surface quality during the SPR process. In addition, SPR joints with single conical-section die allow higher tensile strength and energy absorption compared to those with double conical-section die.展开更多
The concave die design of self-pierce riveting(SPR) is of critical importance for product quality. The optimization of concave die parameters based on orthogonal test is proposed to explore the relationship between se...The concave die design of self-pierce riveting(SPR) is of critical importance for product quality. The optimization of concave die parameters based on orthogonal test is proposed to explore the relationship between self-pierce riveted joint quality and die parameters. There are nine independent die parameter factors in orthogonal test and each factor has 4 levels. In order to evaluate the interlock and neck thickness, we carry out numerical simulations by the software DEFORM-2D. Then, the primary and secondary factors that affect the joint quality have been found out by means of range analysis. Finally, an optimization scheme is brought forward to design concave die in SPR process, which indicates that the joint has higher quality than that of former orthogonal tests.This work can be extended by a detailed mechanical and fatigue analysis for the joint quality of SPR process.展开更多
Self-piercing riveting(SPR)is a mature method to join dissimilar materials in vehicle body assembling.Friction self-piercing riveting(F-SPR)is a newly developed technology for joining low-ductility materials by combin...Self-piercing riveting(SPR)is a mature method to join dissimilar materials in vehicle body assembling.Friction self-piercing riveting(F-SPR)is a newly developed technology for joining low-ductility materials by combining SPR and friction stir spot welding processes.In this paper,the SPR and F-SPR were employed to join AA6061-T6 aluminum alloy and AZ31B magnesium alloy.The two processes were studied in parallel to investigate the effects of stack orientation on riveting force,macro-geomet-rical features,hardness distributions,and mechanical performance of the joints.The results indicate that both processes exhibit a better overall joint quality by riveting from AZ31B to AA6061-T6.Major cracking in the Mg sheet is produced when riveting from AA6061-T6 to AZ31B in the case of SPR,and the cracking is inhibited with the thermal softening effect by friction heat in the case of F-SPR.The F-SPR process requires approximately one-third of the riveting forces of the SPR process but exhibits a maximum of 45.4%and 59.1%higher tensile-shear strength for the stack orientation with AZ31B on top of AA6061-T6 and the opposite direction,respectively,than those of the SPR joints.The stack orientation of riveting from AZ31B to AA6061-T6 renders better cross-section quality and higher tensile-shear strength and is recommended for both processes.展开更多
A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening ch...A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening characteristics.However,there is still a lack of quantitative understanding of the hybrid en-hancement mechanism,hindering its engineering application.To fill in this gap,the current research investigated the microstructure evolution,microhardness distribution,and miniature-tensile performance of the aluminum alloy AA7075-T6 F-SPR joints by experiments.An accurate numerical simulation model was established to quantitatively evaluate the individual contributions of microstructure,local bonding strength,and macro interlocking to the performance of the joint,which could well explain the experi-mental results.It was found that due to the friction stirring of the rivet,solid-state bonding driven by dynamic recrystallization is realized between the trapped aluminum in the rivet cavity and the bottom aluminum sheet.The solid-state bonding zone has 75%yield strength,81%ultimate tensile strength,and 106%elongation compared to the base material.This solid-state bonding enables the internal interlock-ing between the trapped aluminum and the rivet to withstand the additional load,which forms a novel dual-interlock fastening mechanism and increases the peak cross-tension force by 14.3%compared to the single-interlock joint.展开更多
Friction self-piercing riveting(F-SPR)is an emerging technique for low ductility materials joining,which creates a mechanical and solid-state hybrid joint with a semi-hollow rivet.The severe plastic deformation of wor...Friction self-piercing riveting(F-SPR)is an emerging technique for low ductility materials joining,which creates a mechanical and solid-state hybrid joint with a semi-hollow rivet.The severe plastic deformation of work materials and localized elevated temperatures during the F-SPR process yield complex and heterogeneous microstructures.The cut-off action of the work materials by the rivet further complicates the material flow during joint formation.This study employed the F-SPR process to join AA7075-T6 aluminum alloy sheets and systematically investigated the microstructural evolutions using electron backscatter diffraction(EBSD)techniques.The results suggested that as the base material approached the rivet,grains were deformed and recrystallized,forming two distinct fine grain zones(FGZs)surrounding the rivet and in the rivet cavity,re s pectively.Solid-state bonding of aluminum sheets occurred in the FGZs.The formation of FGZ outside the rivet is due to dynamic recrystallization(DRX)triggered by the sliding-to-sticking transition at the rivet/sheet interface.The FGZ in the rivet cavity was caused by the rotation of the trapped aluminum,which created a sticking affected zone at the trapped aluminum/lower sheet interface and led to DRX.Strain rate gradient in the trapped aluminum drove the further expansion of the sticking affected zone and resulted in grain refinement in a larger span.展开更多
基金financial support of the National Natural Science Foundation of China(Grant Nos.52025058 and U1764251)。
文摘Friction self-piercing riveting(F-SPR)process based on a pip die has been invented to solve the cracking problems in riveting high-strength and low-ductility light metals,such as magnesium alloys,cast aluminum,and 7 series aluminum alloys.In this paper,in order to solve quality issues caused by the misalignment between rivet and pip-die in F-SPR,a flat-die based F-SPR process was proposed and employed to join 1.27 mm-thick AA6061-T6 to 3 mm-thick AZ31B.The results indicate that a 1.0 mm die distance is effective to avoid rivet upset and insufficient flaring.As the feed rate increases,the heat input in the whole process decreases,resulting in a larger riveting force,which in turn increases both the bottom thickness and interlock amount.Besides,solid-state bonding,including Al-Mg intermetallic compounds(IMCs),Al-Mg mechanical mixture,and Al-Fe atom interdiffusion was observed at the joint interfaces.The upper Al layer was softened,but the lower Mg layer was hardened,and both sheets exhibited a narrowed affected region with the increase of feed rate,while the rivet hardness shows no obvious change.Three fracture modes appeared accompanying the variations in lap-shear strength and energy absorption as the feed rate increased from 2 mm/s to 8 mm/s.Finally,the F-SPR process using a flat die was compared to those using a pip die and a flat bottom die to show the advantage of flat die on coping with the misalignment problem.
文摘Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has become increasingly popular mainly due to the growing use of lightweight materials in transportation applications.However,SPR joining of these advanced light materials remains a challenge as these materials often lack a good combination of high strength and ductility to resist the large plastic deformation induced by the SPR process.In this paper,SPR joints of advanced materials and their corresponding failure mechanisms are discussed,aiming to provide the foundation for future improvement of SPR joint quality.This paper is divided into three major sections:1)joint failures focusing on joint defects originated from the SPR process and joint failure modes under different mechanical loading conditions,2)joint corrosion issues,and 3)joint optimisation via process parameters and advanced techniques.
基金financially sponsored by the US Department Energy Vehicle Technologies Office, as part of the Joining Core Programmanaged by UT-Battelle LLC for the US Department of Energy under Contract DE-AC05-00OR22725。
文摘A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。
基金The authors would like to acknowledge the financial support of the National Natural Science Foundation of China(52025058 and U1764251)the National Key Research and Development Program of China(2016YFB0101606-8).
文摘In this paper,self-piercing riveting(SPR)and friction self-piercing riveting(F-SPR)processes were employed to join aluminum alloy AA5182-O sheets.Parallel studies were carried out to compare the two processes in terms of joint macrogeometry,tooling force,microhardness,quasi-static mechanical performance,and fatigue behavior.The results indicate that the F-SPR process formed both rivet–sheet interlocking and sheet–sheet solid-state bonding,whereas the SPR process only contained rivet–sheet interlocking.For the same rivet flaring,the F-SPR process required 63%less tooling force than the SPR process because of the softening effect of frictional heat and the lower rivet hardness of F-SPR.The decrease in the switch depth of the F-SPR resulted in more hardening of the aluminum alloy surrounding the rivet.The higher hardness of aluminum and formation of solid-state bonding enhanced the F-SPR joint stiffness under lap-shear loading,which contributed to the higher quasi-static lap-shear strength and longer fatigue life compared to those of the SPR joints.
基金Supported by National Natural Science Foundation of China(Grant No.51805375).
文摘Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension strength of SPR joints was proposed on the basis of finite element(FE)simulation and extreme gradient boosting decision tree(XGBoost)algorithm.An FE model of SPR process was established to simulate the plastic deformations of rivet and substrate materials and verified in terms of cross-sectional dimensions of SPR joints.The residual mechanical field from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints,and cross-tension strengths from FE simulation show a good consistence with the experiment result.Based on the verified FE model,the mechanical properties and thickness of substrate materials were varied and then used for FE simulation to obtain cross-tension strengths of a number of SPR joints,which were used to train the regression model based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints.Results show that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regression model with a respective error less than 7.6%compared to experimental values.
基金This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science&Technology).
文摘The application of magnesium alloys to automobiles is increasing due to their superior specific strength and specific stiffness.In this study,an upper sheet of AZ31 magnesium alloy and a lower sheet of cold-rolled steel were joined by self-piercing riveting(SPR),a method commonly used to join automotive panels.A cross-shaped specimen was fabricated with a punching force of 35 kN,which exhibited the best joint strength for the SPR joint specimen geometry.Monotonic and fatigue strengths were evaluated using cross-shaped specimens at loading angles of 0°,45°,and 90°.The load amplitude corresponding to the fatigue endurance limit was assumed to be at 106 cycles,and the fatigue ratios(=fatigue endurance limit/static strength)at the loading angles of 0°,45°,and 90°are 22%,13%,and 9%,respectively.For all three loading angle specimens,fatigue cracks initiated at the triple point where the rivet shank,the upper sheet and the lower sheet are in contact with each other,with the cracks propagating through the thickness of the upper sheet and ultimately leading to fracture.The fatigue lifetimes were evaluated through the von-Mises stress,maximum principal stress,and equivalent stress intensity factor.It was found that the fatigue lifetimes could be evaluated most appropriately through the maximum principal stress.
基金financially sponsored by the US Department Energy Vehicle Technologies Office, as part of the Joining Core Program。
文摘Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load and mechanical interlock distance increased. Ultrafine grains were formed at the joint in AZ31B as a result of dynamic recrystallization, which contributed to the higher hardness. Fatigue life of the CFRP-AZ31B joint was studied at various peak loads of 0.5, 1, 2, and 3 kN and compared with the resistance spot welded AZ31B-AZ31B from the open literature. The fatigue performance was better at higher peak load(>2 kN) and comparable to that of resistance spot welding of AZ31B to AZ31B at lower peak loads(<1 kN). From fractography, the crack initiation for lower peak load(<1 kN) case was observed at the fretting positions on the top and bottom surfaces of AZ31B sheet. When peak load was increased, fretting between the rivet and the top of AZ31B became more dominant to initiate a crack during fatigue testing.
基金supported by the National Natural Science Foundation of China(Grant No.52205377)the National Key Research and Development Program(Grant No.2022YFB4601804)the Key Basic Research Project of Suzhou(Grant Nos.SJC2022031,SJC2022029).
文摘This paper presents a new machine learning-based calibration framework for strength simulation models of self-piercing riveted(SPR)joints.Strength simulations were conducted through the integrated modeling of SPR joints from process to performance,while physical quasi-static tensile tests were performed on combinations of DP600 high-strength steel and 5754 aluminum alloy sheets under lap-shear loading conditions.A sensitivity study of the critical simulation parameters(e.g.,friction coefficient and scaling factor)was conducted using the controlled variables method and Sobol sensitivity analysis for feature selection.Subsequently,machine-learning-based surrogate models were used to train and accurately represent the mapping between the detailed joint profile and its load-displacement curve.Calibration of the simulation model is defined as a dual-objective optimization task to minimize errors in key load displacement features between simulations and experiments.A multi-objective genetic algorithm(MOGA)was chosen for optimization.The three combinations of SPR joints illustrated the effectiveness of the proposed framework,and good agreement was achieved between the calibrated models and experiments.
基金supported by the National Natural Science Foundation of China(Grant No.52205377)the Key Basic Research Project of Suzhou(Grant Nos.SJC2022029,SJC2022031)the National Key Research and Development Program(Grant No.2022YFB4601804).
文摘In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR joints has received considerable attention.Therefore,this study proposes a data-driven approach to predict the fatigue life and failure modes of SPR joints.The dataset comprises three specimen types:cross-tensile,cross-peel,and tensile-shear.To ensure data consistency,a finite element analysis was employed to convert the external loads of the different specimens.Feature selection was implemented using various machine-learning algorithms to determine the model input.The Gaussian process regression algorithm was used to predict fatigue life,and its performance was compared with different kernel functions commonly used in the field.The results revealed that the Matern kernel exhibited an exceptional predictive capability for fatigue life.Among the data points,95.9%fell within the 3-fold error band,and the remaining 4.1%exceeded the 3-fold error band owing to inherent dispersion in the fatigue data.To predict the failure location,various tree and artificial neural network(ANN)models were compared.The findings indicated that the ANN models slightly outperformed the tree models.The ANN model accurately predicts the failure of joints with varying dimensions and materials.However,minor deviations were observed for the joints with the same sheet.Overall,this data-driven approach provided a reliable predictive model for estimating the fatigue life and failure location of SPR joints.
基金The authors gratefully thank the research funding by the National Key Research and Development Plan of China(Grant No.2017YFB1303503)the research supported by the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010441)+1 种基金the National Natural Science Foundation of China(Grant No.62103234)the project supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QF027).
文摘As more and more composite materials are used in lightweight vehicle white bodies,self-pierce riveting(SPR)technology has attracted great attention.However,the existing riveting tools still have the disadvantages of low efficiency and flexibility.To improve these disadvantages and the riveting qualification rate,this paper improves the control scheme of the existing riveting tools,and proposes a novel controller design approach of the flexible servo riveting system based on the RBF network and SPR process.Firstly,this paper briefly introduces the working principle and SPR procedure of the servo riveting tool.Then a moving component force analysis is performed,which lays the foundation for the motion control.Secondly,the riveting quality inspection rules of traditional riveting tools are used for reference to plan the force-displacement curve autonomously.To control this process,the riveting force is fed back into the closed-loop control of the riveting tool and the riveting speed is computed based on the admittance control algorithm.Then,this paper adopts the permanent magnet synchronous motor(PMSM)as the power of riveting tool,and proposes an integral sliding mode control approach based on the improved reaching law and the radial basis function(RBF)network friction compensation for the PMSM speed control.Finally,the proposed control approach is simulated by Matlab,and is applied to the servo riveting system designed by our laboratory.The simulation and riveting results show the feasibility of the designed controller.
基金the National Natural Science Foundation of China (Grant Nos. 51774097, 51705081)Key Project of the Youth Natural Science Fund of Fujian Provincial University (Grant No. JZ160417) for their kindly financial supports of this workJiang-Hua Deng is grateful for the financial support from Program for New Century Excellent Talents in Fujian Province University (NCETFJ).
文摘The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies were investigated both experimentally and numerically. Lap shear tests were conducted under quasistatic conditions to evaluate the load-carrying capability of these SPR joints. The effect of variation in die geometry (such as variation in the die groove shape, cone height, and die radius) on the main mechanical response of the joints, namely the peak load and energy absorption, was discussed. The results showed that SPR joints produced with the conical-section dies exhibited a failure mode similar to those produced with a conventional die. All the joints failed by tearing of the top steel sheet. Cracks that occurred in the bottom aluminum alloy 6061-T6 sheet around the rivet leg were a result of tangential tensile stress. The cone height of a conical-section die is the most important parameter affecting the surface quality of Al/steel SPR joints. Conical-section dies with a moderate convex can ensure a good surface quality during the SPR process. In addition, SPR joints with single conical-section die allow higher tensile strength and energy absorption compared to those with double conical-section die.
基金the National Natural Science Foundation of China(No.51375282)the China Postdoctoral Science Foundation(No.2012T50621)the Open Fund of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures(No.2011003)
文摘The concave die design of self-pierce riveting(SPR) is of critical importance for product quality. The optimization of concave die parameters based on orthogonal test is proposed to explore the relationship between self-pierce riveted joint quality and die parameters. There are nine independent die parameter factors in orthogonal test and each factor has 4 levels. In order to evaluate the interlock and neck thickness, we carry out numerical simulations by the software DEFORM-2D. Then, the primary and secondary factors that affect the joint quality have been found out by means of range analysis. Finally, an optimization scheme is brought forward to design concave die in SPR process, which indicates that the joint has higher quality than that of former orthogonal tests.This work can be extended by a detailed mechanical and fatigue analysis for the joint quality of SPR process.
基金The authors would like to acknowledge the financial support of the National Key Research and Development Program of China(Grant No.2016YFB0101606-8)the National Natural Science Foundation of China(Grant Nos.U1564204,U1764251,and 51322504).
文摘Self-piercing riveting(SPR)is a mature method to join dissimilar materials in vehicle body assembling.Friction self-piercing riveting(F-SPR)is a newly developed technology for joining low-ductility materials by combining SPR and friction stir spot welding processes.In this paper,the SPR and F-SPR were employed to join AA6061-T6 aluminum alloy and AZ31B magnesium alloy.The two processes were studied in parallel to investigate the effects of stack orientation on riveting force,macro-geomet-rical features,hardness distributions,and mechanical performance of the joints.The results indicate that both processes exhibit a better overall joint quality by riveting from AZ31B to AA6061-T6.Major cracking in the Mg sheet is produced when riveting from AA6061-T6 to AZ31B in the case of SPR,and the cracking is inhibited with the thermal softening effect by friction heat in the case of F-SPR.The F-SPR process requires approximately one-third of the riveting forces of the SPR process but exhibits a maximum of 45.4%and 59.1%higher tensile-shear strength for the stack orientation with AZ31B on top of AA6061-T6 and the opposite direction,respectively,than those of the SPR joints.The stack orientation of riveting from AZ31B to AA6061-T6 renders better cross-section quality and higher tensile-shear strength and is recommended for both processes.
基金support of the National Natural Science Foundation of China(Grant Nos.52025058 and U1764251)the State Key Laboratory of Mechan-ical System and Vibration(Grant No.MSVZD202111)+1 种基金the Japan Society for the Promotion of Science(JSPS)KAKENHI(Grant No.21K14439)Shanghai Jiao Tong University.
文摘A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening characteristics.However,there is still a lack of quantitative understanding of the hybrid en-hancement mechanism,hindering its engineering application.To fill in this gap,the current research investigated the microstructure evolution,microhardness distribution,and miniature-tensile performance of the aluminum alloy AA7075-T6 F-SPR joints by experiments.An accurate numerical simulation model was established to quantitatively evaluate the individual contributions of microstructure,local bonding strength,and macro interlocking to the performance of the joint,which could well explain the experi-mental results.It was found that due to the friction stirring of the rivet,solid-state bonding driven by dynamic recrystallization is realized between the trapped aluminum in the rivet cavity and the bottom aluminum sheet.The solid-state bonding zone has 75%yield strength,81%ultimate tensile strength,and 106%elongation compared to the base material.This solid-state bonding enables the internal interlock-ing between the trapped aluminum and the rivet to withstand the additional load,which forms a novel dual-interlock fastening mechanism and increases the peak cross-tension force by 14.3%compared to the single-interlock joint.
基金financial support of the National Natural Science Foundation of China(Grant Nos.52025058 and U1764251)the National Key Research and Development Program of China(Grant No.2016YFB0101606-08)+1 种基金Shanghai Jiao Tong Universityfinancially supported by Project to Create Research and Educational Hubs for Innovative Manufacturing in Asia,Joining and Welding Research Institute,Osaka University。
文摘Friction self-piercing riveting(F-SPR)is an emerging technique for low ductility materials joining,which creates a mechanical and solid-state hybrid joint with a semi-hollow rivet.The severe plastic deformation of work materials and localized elevated temperatures during the F-SPR process yield complex and heterogeneous microstructures.The cut-off action of the work materials by the rivet further complicates the material flow during joint formation.This study employed the F-SPR process to join AA7075-T6 aluminum alloy sheets and systematically investigated the microstructural evolutions using electron backscatter diffraction(EBSD)techniques.The results suggested that as the base material approached the rivet,grains were deformed and recrystallized,forming two distinct fine grain zones(FGZs)surrounding the rivet and in the rivet cavity,re s pectively.Solid-state bonding of aluminum sheets occurred in the FGZs.The formation of FGZ outside the rivet is due to dynamic recrystallization(DRX)triggered by the sliding-to-sticking transition at the rivet/sheet interface.The FGZ in the rivet cavity was caused by the rotation of the trapped aluminum,which created a sticking affected zone at the trapped aluminum/lower sheet interface and led to DRX.Strain rate gradient in the trapped aluminum drove the further expansion of the sticking affected zone and resulted in grain refinement in a larger span.