Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we bu...A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we build the stageactions in an Arduino microcontroller,and finite state machine(FSM)is also built in the Arduino micro controller to communicatewith a computer and a radio frequency(RF)controller.A special displaying scheme with five states is employed to indicatethe operation of the stage.Finally,the stage is fully tested and has a700nm resolution in Z motion of the SPM.展开更多
This paper presents the design and implementation of a Stepper Motor using Nexys2 circuit board based on a Xilinx Spartan 3E Field Programmable Gate Array (FPGA) device with VHDL code. The algorithm implemented on FPG...This paper presents the design and implementation of a Stepper Motor using Nexys2 circuit board based on a Xilinx Spartan 3E Field Programmable Gate Array (FPGA) device with VHDL code. The algorithm implemented on FPGA allows a substantial decrease of the equivalent processing time developed by different velocity controllers. The Stepper Speed control is achieved using VHDL code, and the hardware digital circuit is designed for a programmable rotational stepper motor using VHDL as a tool and FPGA as a target technology. The 50 MHZ provided by the starter kit is divided to obtain the necessary delay time between the motor phases that ranges between 2 - 10 m seconds. Though output selections, the direction of rotation of the stepper motor besides the magnitude of the angle of movement and the rotation speed can be controlled. The major advantage of using reconfigurable hardware (FPGA) in implementing the Stepper Motor instead of a discrete digital component is that it makes modifications to the design easy and quick and also, the total design hence represents an embedded system (works without computer). The total programmable hardware design that controlled on the stepper motor movement, occupied an area that did not exceed 12% of the chip resources.展开更多
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.
文摘A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we build the stageactions in an Arduino microcontroller,and finite state machine(FSM)is also built in the Arduino micro controller to communicatewith a computer and a radio frequency(RF)controller.A special displaying scheme with five states is employed to indicatethe operation of the stage.Finally,the stage is fully tested and has a700nm resolution in Z motion of the SPM.
文摘This paper presents the design and implementation of a Stepper Motor using Nexys2 circuit board based on a Xilinx Spartan 3E Field Programmable Gate Array (FPGA) device with VHDL code. The algorithm implemented on FPGA allows a substantial decrease of the equivalent processing time developed by different velocity controllers. The Stepper Speed control is achieved using VHDL code, and the hardware digital circuit is designed for a programmable rotational stepper motor using VHDL as a tool and FPGA as a target technology. The 50 MHZ provided by the starter kit is divided to obtain the necessary delay time between the motor phases that ranges between 2 - 10 m seconds. Though output selections, the direction of rotation of the stepper motor besides the magnitude of the angle of movement and the rotation speed can be controlled. The major advantage of using reconfigurable hardware (FPGA) in implementing the Stepper Motor instead of a discrete digital component is that it makes modifications to the design easy and quick and also, the total design hence represents an embedded system (works without computer). The total programmable hardware design that controlled on the stepper motor movement, occupied an area that did not exceed 12% of the chip resources.