The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by...The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.展开更多
In this paper, we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of s...In this paper, we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of smooth programs to approximate the MPCC. Using an 11 penalty function, the line search assures global convergence, while the superlinear convergence rate is shown under the strictly complementary and second-order sufficient conditions. Moreover, we prove that the current iterated point is an exact stationary point of the mathematical programs with equilibrium constraints (MPEC) when the algorithm terminates finitely.展开更多
In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed a...In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed algorithm, a main search direction is obtained by solving a Quadratic Programming (QP) which always has a solution. In order to avoid the Maratos effect, a correction direction is obtained by updating the main direction with a simple explicit formula. Under mild conditions without the strict complementarity, the global and superlinear convergence of the algorithm can be obtained. Finally, some numerical experiments are reported.展开更多
In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subpro...In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.展开更多
An efficient SQP algorithm for solving nonlinear degenerate problems is proposed in the paper. At each iteration of the algorithm, a quadratic programming subproblem, which is always feasible by introducing a slack va...An efficient SQP algorithm for solving nonlinear degenerate problems is proposed in the paper. At each iteration of the algorithm, a quadratic programming subproblem, which is always feasible by introducing a slack variable, is solved to obtain a search direction. The steplength along this direction is computed by employing the 1∞ exact penalty function through Armijo-type line search scheme. The algorithm is proved to be convergent globally under mild conditions.展开更多
In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential ...In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential component hk, which is also called horizontal step, concentrates on reducing a model of the merit functions. As a filter method, it reduces both the infeasibility and the objective function. This is the same property of these two methods. In this paper, one concerns the composite-step like filter approach. That is, a step is tangential component hk if the infeasibility is reduced. Or else, Sk is a composite step composed of normal component Uk, and tangential component hk.展开更多
基金Project(030103) supported by the Weaponry Equipment Pre-Research Key Foundation of ChinaProject(69982009) supported by the National Natural Science Foundation of China
文摘The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.
基金supported by the National Natural Science Foundation of China (Nos.10501009,10771040)the Natural Science Foundation of Guangxi Province of China (Nos.0728206,0640001)the China Postdoctoral Science Foundation (No.20070410228)
文摘In this paper, we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of smooth programs to approximate the MPCC. Using an 11 penalty function, the line search assures global convergence, while the superlinear convergence rate is shown under the strictly complementary and second-order sufficient conditions. Moreover, we prove that the current iterated point is an exact stationary point of the mathematical programs with equilibrium constraints (MPEC) when the algorithm terminates finitely.
基金the National Natural Science Foundation of China(No.10261001)Guangxi Science Foundation(Nos.0236001,0640001)China as well as Guangxi University Key Program for Science and Technology Research(No.2005ZD02).
文摘In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed algorithm, a main search direction is obtained by solving a Quadratic Programming (QP) which always has a solution. In order to avoid the Maratos effect, a correction direction is obtained by updating the main direction with a simple explicit formula. Under mild conditions without the strict complementarity, the global and superlinear convergence of the algorithm can be obtained. Finally, some numerical experiments are reported.
文摘In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.
基金Supported by the National Natural Science Foundation of China(No.10671060)the Specialized Research Found for the Doctoral Program of Higher Education(No.20030532006)
文摘An efficient SQP algorithm for solving nonlinear degenerate problems is proposed in the paper. At each iteration of the algorithm, a quadratic programming subproblem, which is always feasible by introducing a slack variable, is solved to obtain a search direction. The steplength along this direction is computed by employing the 1∞ exact penalty function through Armijo-type line search scheme. The algorithm is proved to be convergent globally under mild conditions.
基金Supported partially by Chinese NNSF grants 19731010the knowledge innovation program of CAS.
文摘In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential component hk, which is also called horizontal step, concentrates on reducing a model of the merit functions. As a filter method, it reduces both the infeasibility and the objective function. This is the same property of these two methods. In this paper, one concerns the composite-step like filter approach. That is, a step is tangential component hk if the infeasibility is reduced. Or else, Sk is a composite step composed of normal component Uk, and tangential component hk.