In this paper, we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of s...In this paper, we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of smooth programs to approximate the MPCC. Using an 11 penalty function, the line search assures global convergence, while the superlinear convergence rate is shown under the strictly complementary and second-order sufficient conditions. Moreover, we prove that the current iterated point is an exact stationary point of the mathematical programs with equilibrium constraints (MPEC) when the algorithm terminates finitely.展开更多
In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed a...In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed algorithm, a main search direction is obtained by solving a Quadratic Programming (QP) which always has a solution. In order to avoid the Maratos effect, a correction direction is obtained by updating the main direction with a simple explicit formula. Under mild conditions without the strict complementarity, the global and superlinear convergence of the algorithm can be obtained. Finally, some numerical experiments are reported.展开更多
In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subpro...In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.展开更多
An efficient SQP algorithm for solving nonlinear degenerate problems is proposed in the paper. At each iteration of the algorithm, a quadratic programming subproblem, which is always feasible by introducing a slack va...An efficient SQP algorithm for solving nonlinear degenerate problems is proposed in the paper. At each iteration of the algorithm, a quadratic programming subproblem, which is always feasible by introducing a slack variable, is solved to obtain a search direction. The steplength along this direction is computed by employing the 1∞ exact penalty function through Armijo-type line search scheme. The algorithm is proved to be convergent globally under mild conditions.展开更多
Reduced-space SQP algorithms for optimization of distillation column are studied.Variables decomposition is used to eliminate dependent variables and equality constraints,which reduce the dimension of QP sub-problems ...Reduced-space SQP algorithms for optimization of distillation column are studied.Variables decomposition is used to eliminate dependent variables and equality constraints,which reduce the dimension of QP sub-problems involved in iterations of SQP.Compared with the one based on orthonormal bases,reduced-space SQP based on orthogonal bases retains the convergence property while avoids QR decompositon.The improved computation efficiency is illustrated in a enzene/toluene distillation column optimization example, based on author’s,previous work.展开更多
基金supported by the National Natural Science Foundation of China (Nos.10501009,10771040)the Natural Science Foundation of Guangxi Province of China (Nos.0728206,0640001)the China Postdoctoral Science Foundation (No.20070410228)
文摘In this paper, we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of smooth programs to approximate the MPCC. Using an 11 penalty function, the line search assures global convergence, while the superlinear convergence rate is shown under the strictly complementary and second-order sufficient conditions. Moreover, we prove that the current iterated point is an exact stationary point of the mathematical programs with equilibrium constraints (MPEC) when the algorithm terminates finitely.
基金the National Natural Science Foundation of China(No.10261001)Guangxi Science Foundation(Nos.0236001,0640001)China as well as Guangxi University Key Program for Science and Technology Research(No.2005ZD02).
文摘In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed algorithm, a main search direction is obtained by solving a Quadratic Programming (QP) which always has a solution. In order to avoid the Maratos effect, a correction direction is obtained by updating the main direction with a simple explicit formula. Under mild conditions without the strict complementarity, the global and superlinear convergence of the algorithm can be obtained. Finally, some numerical experiments are reported.
文摘In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.
基金Supported by the National Natural Science Foundation of China(No.10671060)the Specialized Research Found for the Doctoral Program of Higher Education(No.20030532006)
文摘An efficient SQP algorithm for solving nonlinear degenerate problems is proposed in the paper. At each iteration of the algorithm, a quadratic programming subproblem, which is always feasible by introducing a slack variable, is solved to obtain a search direction. The steplength along this direction is computed by employing the 1∞ exact penalty function through Armijo-type line search scheme. The algorithm is proved to be convergent globally under mild conditions.
文摘Reduced-space SQP algorithms for optimization of distillation column are studied.Variables decomposition is used to eliminate dependent variables and equality constraints,which reduce the dimension of QP sub-problems involved in iterations of SQP.Compared with the one based on orthonormal bases,reduced-space SQP based on orthogonal bases retains the convergence property while avoids QR decompositon.The improved computation efficiency is illustrated in a enzene/toluene distillation column optimization example, based on author’s,previous work.