There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure ...There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure that incorporates concentrated windings on the stator poles and plain laminations of ferromagnetic material as a rotor.Due to this attributes,advances are being made rapidly with the consideration that SRM can be used as an alternative to DC motors and permanent magnet motors.The objective of this paper is to present an overview of the recent developments and a prediction of possible future advancements in SR Drives.Brief history,importance,innovations in structure and control,along with practical application examples are all discussed here to give a more in-depth comprehension of the motor.展开更多
开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要...开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要依靠外部给定来切换工作象限,在四象限运行工况下存在切换过程平滑性难以控制的问题。针对此,本文提出一种将SRM转速环控制系统及其四象限控制方法相结合,以传统的角度位置控制(Angle position control,APC)理论为基础,将转速调节器双极性输出量与电机转速方向进行逻辑判断形成新的APC控制参数,配合传统电流斩波控制(Chopping current control,CCC)形成新型的四象限转速环控制系统。该系统优化了SRM频繁电制动切换的顿挫问题,为电动车坡道动态行驶安全提供了平滑切换的保障。仿真和实验结果均验证了该系统原理的可行性,较好地实现了电动车SRM驱动系统的四象限工况切换。展开更多
基金This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07043735)。
文摘There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure that incorporates concentrated windings on the stator poles and plain laminations of ferromagnetic material as a rotor.Due to this attributes,advances are being made rapidly with the consideration that SRM can be used as an alternative to DC motors and permanent magnet motors.The objective of this paper is to present an overview of the recent developments and a prediction of possible future advancements in SR Drives.Brief history,importance,innovations in structure and control,along with practical application examples are all discussed here to give a more in-depth comprehension of the motor.
文摘开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要依靠外部给定来切换工作象限,在四象限运行工况下存在切换过程平滑性难以控制的问题。针对此,本文提出一种将SRM转速环控制系统及其四象限控制方法相结合,以传统的角度位置控制(Angle position control,APC)理论为基础,将转速调节器双极性输出量与电机转速方向进行逻辑判断形成新的APC控制参数,配合传统电流斩波控制(Chopping current control,CCC)形成新型的四象限转速环控制系统。该系统优化了SRM频繁电制动切换的顿挫问题,为电动车坡道动态行驶安全提供了平滑切换的保障。仿真和实验结果均验证了该系统原理的可行性,较好地实现了电动车SRM驱动系统的四象限工况切换。