The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Verti...The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Vertical profiles of both backscatter and extinction coefficients for dust and non-dust aerosols were extracted from a mixed Asian dust plume using the depolarization ratio from lidar observations.Vertical profiles of backscatter and extinction coefficients of non-dust particles were input into an inversion algorithm to retrieve the SSAs of non-dust aerosols.Atmospheric aerosol layers at different heights had different light-absorbing characteristics.The SSAs of non-dust particles at each height varied with aerosol type,which was either urban/industrial pollutants from China transported over long distances at high altitude,or regional/local pollutants from the Korean peninsula.Taking advantage of independent profiles of SSAs of non-dust particles,vertical profiles of SSAs of Asian dust mixed with pollutants were estimated for the first time,with a new approach suggested in this study using an empirical determination of the SSA of pure dust.The SSAs of the Asian dust-pollutants mixture within the planetary boundary layer (PBL) were in the range 0.88-0.91,while the values above the PBL were in the range 0.76-0.87,with a very low mean value of 0.76 ± 0.05.The total mixed dust plume SSAs in each aerosol layer were integrated over height for comparison with results from the Aerosol Robotics Network (AERONET) measurements.Values of SSA retrieved from lidar observations of 0.92 ± 0.01 were in good agreement with the results from AERONET measurements.展开更多
The single-scattering albedo (SSA), which quantifies radiative absorption capability, is an important optical property of aerosols. Ground-based methods have been extensively exploited to determine aerosol SSA but t...The single-scattering albedo (SSA), which quantifies radiative absorption capability, is an important optical property of aerosols. Ground-based methods have been extensively exploited to determine aerosol SSA but there were no satellite-based SSA measurements available until the advent of advanced remote sensing techniques, such as the Ozone Monitoring Instrument (OMI). Although the overall accuracy of OMI SSA is estimated to approach 0.1, its regional availability is unclear. Four-year SSA daily measurements from three Aerosol Robotic Network (AERONET) sites in China (Xianghe, Taihu, and Hong Kong) are chosen to determine the accuracy of OMI SSA in specific locations. The results show that on a global scale, the OMI SSA is systematically higher (with a mean relative bias of 3.5% and a RMS difference of ~0.06) and has poor correlation with the AERONET observations. In the Xianghe, Taihu, and Hong Kong sites, the correlation coefficients are 0.16, 0.47, and 0.44, respectively, suggesting that the distinct qualities of OMI SSA depend on geographic locations and/or dominant aerosol environments. The two types of SSA data yield the best agreement in Taihu and the worst in Hong Kong; the differing behavior is likely caused by varying levels of cloud contamination. The good consistency of the aerosol variation between the two SSA datasets on a seasonal scale is promising. These findings suggest that the current-version OMI SSA product can be applied to qualitatively characterize climatological variations of aerosol properties despite its limited accuracy as an instantaneous measurement.展开更多
We proposed a method to estimate single scattering albedo of winter wheat over the North China Plain with AMSR-E passive microwave imagery. The relationships of single scattering albedo and optical depth between 6. 92...We proposed a method to estimate single scattering albedo of winter wheat over the North China Plain with AMSR-E passive microwave imagery. The relationships of single scattering albedo and optical depth between 6. 925 GHz and 10. 65 GHz were derived from simulations. To retrieve the single scattering albedo,the relationships were combined with the physical expressions of microwave vegetation indices derived from the first-order parameterized emission model. Comparisons with normalized difference vegetation index( NDVI) obtained from daily MODIS reflectance product showed that the variations in winter wheat single scattering albedo were similar to those of winter wheat NDVI. However,several differences were observed. NDVI showed saturation from the heading stage to the milky stage of winter wheat,whereas single scattering albedo remained sensitive to the growth of winter wheat. Single scattering albedo offers certain advantages in reflecting the growth status of winter wheat.展开更多
利用兰州大学半干旱气候和环境观测站SACOL(Semi-Arid Climate and Environment Observatory of Lanzhou University)2007年11月1日-2008年10月31日AE-31黑碳仪和2007年8月1日-2008年7月31日M9003积分浊度仪的连续观测资料,对该地区气...利用兰州大学半干旱气候和环境观测站SACOL(Semi-Arid Climate and Environment Observatory of Lanzhou University)2007年11月1日-2008年10月31日AE-31黑碳仪和2007年8月1日-2008年7月31日M9003积分浊度仪的连续观测资料,对该地区气溶胶散射和吸收特性的变化特征进行了分析。结果表明,该地区气溶胶年平均散射系数为158.86M.m-1,吸收系数为14.11M.m-1,520nm单次散射比为0.83;散射系数和吸收系数的年变化呈单峰型,峰值分别出现在12月和11月;采暖期内日变化呈双峰型,非采暖期内近似表现为单峰型。在沙尘天气条件下,散射系数和吸收系数分别增大了103.8%和88.5%。结合同期APS-3321粒子谱仪的相关观测资料分析得出,无论是粒子数浓度还是质量浓度,与散射系数和吸收系数的相关系数均在0.8以上。展开更多
根据米耶理论,对均匀系中单粒子平均单次散射反照率的计算进行了研究,并分析了反照率与粒子尺度因子以及复折射率之间的关系。结果表明,当粒子尺度因子x较小时,反照率随着x的增大而增大,但是当x再继续增大时,反照率出现了"波动&quo...根据米耶理论,对均匀系中单粒子平均单次散射反照率的计算进行了研究,并分析了反照率与粒子尺度因子以及复折射率之间的关系。结果表明,当粒子尺度因子x较小时,反照率随着x的增大而增大,但是当x再继续增大时,反照率出现了"波动",总体呈现出减小的趋势,最终趋于0.5。利用米耶理论和van de hulst近似,还分别计算0.4~0.5μm和8~12μm光谱范围内气溶胶粒子的反照率,并进行了比较,结果表明,除了波长为3μm的邻域外,随着波长的增大,反照率逐渐减小,但是利用van de hulst近似所计算的结果在8~12μm光谱范围内有较大的误差。展开更多
基金funded by the Korea Meteorological Administration Research and Development Program (Grant No.CATER 2012-7080)a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (Grant No.2012R1A1A2002983)the Global Ph.D. Fellowship program sponsored by the National Research Foundation of Korea
文摘The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Vertical profiles of both backscatter and extinction coefficients for dust and non-dust aerosols were extracted from a mixed Asian dust plume using the depolarization ratio from lidar observations.Vertical profiles of backscatter and extinction coefficients of non-dust particles were input into an inversion algorithm to retrieve the SSAs of non-dust aerosols.Atmospheric aerosol layers at different heights had different light-absorbing characteristics.The SSAs of non-dust particles at each height varied with aerosol type,which was either urban/industrial pollutants from China transported over long distances at high altitude,or regional/local pollutants from the Korean peninsula.Taking advantage of independent profiles of SSAs of non-dust particles,vertical profiles of SSAs of Asian dust mixed with pollutants were estimated for the first time,with a new approach suggested in this study using an empirical determination of the SSA of pure dust.The SSAs of the Asian dust-pollutants mixture within the planetary boundary layer (PBL) were in the range 0.88-0.91,while the values above the PBL were in the range 0.76-0.87,with a very low mean value of 0.76 ± 0.05.The total mixed dust plume SSAs in each aerosol layer were integrated over height for comparison with results from the Aerosol Robotics Network (AERONET) measurements.Values of SSA retrieved from lidar observations of 0.92 ± 0.01 were in good agreement with the results from AERONET measurements.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-03)the National Natural Science Foundation of China (Grant Nos. 40805007 and 41175032)
文摘The single-scattering albedo (SSA), which quantifies radiative absorption capability, is an important optical property of aerosols. Ground-based methods have been extensively exploited to determine aerosol SSA but there were no satellite-based SSA measurements available until the advent of advanced remote sensing techniques, such as the Ozone Monitoring Instrument (OMI). Although the overall accuracy of OMI SSA is estimated to approach 0.1, its regional availability is unclear. Four-year SSA daily measurements from three Aerosol Robotic Network (AERONET) sites in China (Xianghe, Taihu, and Hong Kong) are chosen to determine the accuracy of OMI SSA in specific locations. The results show that on a global scale, the OMI SSA is systematically higher (with a mean relative bias of 3.5% and a RMS difference of ~0.06) and has poor correlation with the AERONET observations. In the Xianghe, Taihu, and Hong Kong sites, the correlation coefficients are 0.16, 0.47, and 0.44, respectively, suggesting that the distinct qualities of OMI SSA depend on geographic locations and/or dominant aerosol environments. The two types of SSA data yield the best agreement in Taihu and the worst in Hong Kong; the differing behavior is likely caused by varying levels of cloud contamination. The good consistency of the aerosol variation between the two SSA datasets on a seasonal scale is promising. These findings suggest that the current-version OMI SSA product can be applied to qualitatively characterize climatological variations of aerosol properties despite its limited accuracy as an instantaneous measurement.
基金National Natural Science Foundation of China(No.41171259)National Basic Research Program of China(973 Program)(No.2013CB733406)
文摘We proposed a method to estimate single scattering albedo of winter wheat over the North China Plain with AMSR-E passive microwave imagery. The relationships of single scattering albedo and optical depth between 6. 925 GHz and 10. 65 GHz were derived from simulations. To retrieve the single scattering albedo,the relationships were combined with the physical expressions of microwave vegetation indices derived from the first-order parameterized emission model. Comparisons with normalized difference vegetation index( NDVI) obtained from daily MODIS reflectance product showed that the variations in winter wheat single scattering albedo were similar to those of winter wheat NDVI. However,several differences were observed. NDVI showed saturation from the heading stage to the milky stage of winter wheat,whereas single scattering albedo remained sensitive to the growth of winter wheat. Single scattering albedo offers certain advantages in reflecting the growth status of winter wheat.
文摘利用兰州大学半干旱气候和环境观测站SACOL(Semi-Arid Climate and Environment Observatory of Lanzhou University)2007年11月1日-2008年10月31日AE-31黑碳仪和2007年8月1日-2008年7月31日M9003积分浊度仪的连续观测资料,对该地区气溶胶散射和吸收特性的变化特征进行了分析。结果表明,该地区气溶胶年平均散射系数为158.86M.m-1,吸收系数为14.11M.m-1,520nm单次散射比为0.83;散射系数和吸收系数的年变化呈单峰型,峰值分别出现在12月和11月;采暖期内日变化呈双峰型,非采暖期内近似表现为单峰型。在沙尘天气条件下,散射系数和吸收系数分别增大了103.8%和88.5%。结合同期APS-3321粒子谱仪的相关观测资料分析得出,无论是粒子数浓度还是质量浓度,与散射系数和吸收系数的相关系数均在0.8以上。
文摘根据米耶理论,对均匀系中单粒子平均单次散射反照率的计算进行了研究,并分析了反照率与粒子尺度因子以及复折射率之间的关系。结果表明,当粒子尺度因子x较小时,反照率随着x的增大而增大,但是当x再继续增大时,反照率出现了"波动",总体呈现出减小的趋势,最终趋于0.5。利用米耶理论和van de hulst近似,还分别计算0.4~0.5μm和8~12μm光谱范围内气溶胶粒子的反照率,并进行了比较,结果表明,除了波长为3μm的邻域外,随着波长的增大,反照率逐渐减小,但是利用van de hulst近似所计算的结果在8~12μm光谱范围内有较大的误差。