The Speziale,Sarkar and Gatski Reynolds Stress Model(SSG RSM)is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller.Four levels of grid resolutions are chosen to dete...The Speziale,Sarkar and Gatski Reynolds Stress Model(SSG RSM)is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller.Four levels of grid resolutions are chosen to determine an optimised number of grids for further simulations.CFD model data in terms of the flow field,trailing vortex,and the power number are compared with published experimental results.The comparison shows that the global fluid dynamics throughout the stirred tank and the local characteristics of trailing vortices near the blade tips can be captured by the SSG RSM.The predicted mean velocity components in axial,radial and tangential direction are also in good agreement with experiment data.The power number predicted is quite close to the designed value,which demonstrates that this model can accurately calculate the power number in the stirred tank.Therefore,the simulation by using a combination of SSG RSM and MRF impeller rotational model can accurately model turbulent fluid flow in the stirred tank,and it offers an alternative method for design and optimisation of stirred tanks.展开更多
基金support from the Major State Basic Research Development Program of China(973 Program,Grant No.2005CB221205)。
文摘The Speziale,Sarkar and Gatski Reynolds Stress Model(SSG RSM)is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller.Four levels of grid resolutions are chosen to determine an optimised number of grids for further simulations.CFD model data in terms of the flow field,trailing vortex,and the power number are compared with published experimental results.The comparison shows that the global fluid dynamics throughout the stirred tank and the local characteristics of trailing vortices near the blade tips can be captured by the SSG RSM.The predicted mean velocity components in axial,radial and tangential direction are also in good agreement with experiment data.The power number predicted is quite close to the designed value,which demonstrates that this model can accurately calculate the power number in the stirred tank.Therefore,the simulation by using a combination of SSG RSM and MRF impeller rotational model can accurately model turbulent fluid flow in the stirred tank,and it offers an alternative method for design and optimisation of stirred tanks.