The necessary and sufficient conditions under which a ring satisfies regular power-substitution are investigated. It is shown that a ring R satisfies regular powersubstitution if and only if a-b in R implies that ther...The necessary and sufficient conditions under which a ring satisfies regular power-substitution are investigated. It is shown that a ring R satisfies regular powersubstitution if and only if a-b in R implies that there exist n ∈ N and a U E GLn (R) such that aU = Ub if and only if for any regular x ∈ R there exist m,n ∈ N and U ∈ GLn(R) such that x^mIn = xmUx^m, where a-b means that there exists x,y, z∈ R such that a =ybx, b = xaz and x= xyx = xzx. It is proved that every directly finite simple ring satisfies regular power-substitution. Some applications for stably free R-modules are also obtained.展开更多
基金supported by the grant of Hangzhou Normal University (No.200901).
文摘The necessary and sufficient conditions under which a ring satisfies regular power-substitution are investigated. It is shown that a ring R satisfies regular powersubstitution if and only if a-b in R implies that there exist n ∈ N and a U E GLn (R) such that aU = Ub if and only if for any regular x ∈ R there exist m,n ∈ N and U ∈ GLn(R) such that x^mIn = xmUx^m, where a-b means that there exists x,y, z∈ R such that a =ybx, b = xaz and x= xyx = xzx. It is proved that every directly finite simple ring satisfies regular power-substitution. Some applications for stably free R-modules are also obtained.