期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ENHANCEMENT OF RADIATION-INDUCED APOPTOSIS IN RAJI CELL LINE BY BC1-2 ANTISENSE OLIGODEOXYNUCLEOTIDE 被引量:2
1
作者 何冬梅 张洹 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2005年第2期107-110,共4页
Objective: To investigate whether the Bc1-2 antisense oligonucleotide(ASODN) may enhance radiation-induced apoptosis in Raji cell line. Methods: Cell surviving fraction was determined using the trypan blue dye exclusi... Objective: To investigate whether the Bc1-2 antisense oligonucleotide(ASODN) may enhance radiation-induced apoptosis in Raji cell line. Methods: Cell surviving fraction was determined using the trypan blue dye exclusion assay. The expression level of bc1-2 protein was assayed by immunofluorescence using fluoresce isothiocyanate label. Apoptosis was detected by Giemsa staining and flow cytomertric cell cycle analysis. Results: It was found that Bc1-2 ASODN combined with radiation had significantly reduced the number of viable cells (P<0.05). There was no difference on cell survival between mismatch Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone. Bc1-2 ASODN combined with radiation could significantly inhibit expression of Bc1-2 protein in Raji cells (P<0.05). Cells treated with Bc1-2 ASODN combined with radiation at 72 h displayed classic apoptotic changes. Apoptosis rates of Raji cells treated with Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone, respectively. Conclusion: Bc1-2 antisense oligonucleotide can enhance radiation-induced apoptosis in Raji cell line. 展开更多
关键词 BC1-2 antisense oligonucleotide Raji cells RADIATION APOPTOSIS
下载PDF
The 5’-Untranslated Region of the C9orf72 mRNA Exhibits a Phylogenetic Alignment to the Cis-Aconitase Iron-Responsive Element;Novel Therapies for Amytrophic Lateral Sclerosis
2
作者 Monica A. Lu Susruthi Rajanala +4 位作者 Sohan V. Mikkilineni Catherine M. Cahill Robert Brown James D. Berry Jack T. Rogers 《Neuroscience & Medicine》 2016年第1期15-26,共12页
The hexanucleotide repeat mutation in the intron-1 of the chromosome 9 open reading frame (C9orf72) is a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Altered RNA folding pla... The hexanucleotide repeat mutation in the intron-1 of the chromosome 9 open reading frame (C9orf72) is a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Altered RNA folding plays a role in ALS pathogenesis in two ways: non-ATG translation of the repeat can lead to aggregates of the known C9orf72 specific dipeptide polymer, whereas the repeat also can form neurotoxic RNA inclusions that dose-responsively kill motor neurons. We report the presence of a homology in the 5’untranslated region (UTR) of the messenger RNA encoding C9orf72 with the iron responsive elements (IRE) that control expression of iron-associated transcripts and predict that this RNA structure may iron-dependently regulate C9orf72 translation. We previously report altered serum ferritin levels track with severity of ALS in patients. Here, we conduct bioinformatics analyses to determine the secondary structure of the 5’UTR in C9orf72 mRNA and find it aligned with IREs in the human mitochondrial cis-aconitase and L and H-ferritin transcripts. Comparison of the role of RNA repeats in Friedriech’s ataxia and fragile X mental retardation suggests the utility of RNA based therapies for treatment of ALS. Antisense oligonucleotides (ASO) have been reported to therapeutically target these GGGGCC repeats. At the same time, because the function of C9orf72 is unknown, knockdown strategies carry some risk of inducing or compounding haploinsufficiency. We propose, for consideration, an approach that may enhance its therapeutic dynamic range by increasing the 5’UTR driven translation of C9orf72 protein to compensate for any potential ALS-specific or ASO-induced haploinsufficieny. 展开更多
关键词 Amyotrophic Lateral Sclerosis (ALS) Iron-Responsive Element (IRE) C9orf72 mRNA Mitochondrial Aconitase (mACO) Frontotemporal Dementia (FTD) Amyloid Precursor Protein (APP) HIV Trans-Activation Response Element (TAR) antisense oligonucleotides (ASO) Iron-Regulatory Proteins-1 and -2 (IRP1 and IRP2)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部