The aim of this paper is to contribute to the dynamic modeling of multi-pulse voltage sourced converter based static synchronous series compensator and static synchronous compensator. Details about the internal functi...The aim of this paper is to contribute to the dynamic modeling of multi-pulse voltage sourced converter based static synchronous series compensator and static synchronous compensator. Details about the internal functioning and topology connections are given in order to understand the multi-pulse converter. Using the 24 and 48-pulse topologies switching functions models are presented. The models correctly represent commutations of semiconductor devices in multi-pulse converters, which consequently allows a precise representation of harmonic components. Additionally, time domain models that represent harmonic components are derived based on the switching functions models. Switching functions, as well as time domain models are carried out in the original abc power system coordinates. Effectiveness and precision of the models are validated against simulations performed in Matlab/Simulink?. Additionally, in order to accomplish a more realistic comparison, a laboratory prototype set up is used to assess simulated waveforms.展开更多
文摘针对静止同步补偿器(static synchronous compensator,STATCOM)在无功补偿以及抑制电压频繁波动等场景下的优良特性,对STATCOM的V-I输出特性进行详细分析,说明其参与电压控制的原理以及和容抗器相比具有的优越性。为了增大STATCOM的无功裕度,使之有足够的能力应对电力系统可能出现的各种扰动,提出STATCOM接入系统的各种控制模式,以及在稳态电压控制模式下的无功置换策略和远方自动电压控制(automatic voltage control,AVC)模式下的无功置换优化方法。在远方AVC模式下,以STATCOM无功置换后出力最小和容抗器动作次数最少为目标函数,将容抗器投切次数作为罚函数引入到目标函数中,并讨论罚函数系数的确定方法和合理性。结果表明,该无功置换优化模型可以满足调压的同时最大限度地提升STATCOM的无功裕度,同时可以使容抗器的动作次数最少。
文摘The aim of this paper is to contribute to the dynamic modeling of multi-pulse voltage sourced converter based static synchronous series compensator and static synchronous compensator. Details about the internal functioning and topology connections are given in order to understand the multi-pulse converter. Using the 24 and 48-pulse topologies switching functions models are presented. The models correctly represent commutations of semiconductor devices in multi-pulse converters, which consequently allows a precise representation of harmonic components. Additionally, time domain models that represent harmonic components are derived based on the switching functions models. Switching functions, as well as time domain models are carried out in the original abc power system coordinates. Effectiveness and precision of the models are validated against simulations performed in Matlab/Simulink?. Additionally, in order to accomplish a more realistic comparison, a laboratory prototype set up is used to assess simulated waveforms.