A novel coordinated controller is proposed in the paper for SVC, excitation and steam valving for a single machine infinite system. Firstly, the nonlinear mathematic model of the system including the itation and steam...A novel coordinated controller is proposed in the paper for SVC, excitation and steam valving for a single machine infinite system. Firstly, the nonlinear mathematic model of the system including the itation and steam valving is exactly linearized via state feedback. Then, the quasi-linearized system after the exact lineariztion is controlled by the sliding model controller based on Lyapunov direct method. At last, the novel coordinated controller is compared with a traditional linear controller and a nonlinear optimal controller respectively by simulations. The simulation results show that the proposed controller gives better dynamic response and stronger robustness.展开更多
This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two...This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two main objectives of the controller design, damping low frequencies oscillations and enhancing power system stability. This method relies on shaping the closed-loop sensitivity functions in the Nyquist plot under the constraints of these functions. These constraints can be linearized by choosing a desired open-loop transfer function. The robust controller is designed to minimize the error between the open-loop of the original plant model and the desired transfer functions. These outcomes can be achieved by using convex optimization methods. Convexity of the problem formulation ensures global optimality. One of the advantages of the proposed approach is that the approach accounts for multi-model uncertainty. In contrast to the methods available in the literature, the proposed approach deals with full-order model (i.e., model reduction is not required) with lower controller order. The issue of time delay of feedback signals has been addressed in this paper for different values of time delay by applying a multi-model optimization technique. The proposed approach is compared to other existing techniques to design a robust controller which is based on H2 under pole placement. Both techniques are applied to the 68-bus system to evaluate and validate the robust controller performance under different load scenarios and different wind generations.展开更多
针对独立风柴混合电力系统中风能和无功负荷变化所引起的电压波动问题,提出了利用静止无功补偿器(static var compensator,SVC)稳定电压的控制策略。实际SVC存在模型参数不确定及状态变量不完全可测的问题,故利用滑模控制算法,设计基于...针对独立风柴混合电力系统中风能和无功负荷变化所引起的电压波动问题,提出了利用静止无功补偿器(static var compensator,SVC)稳定电压的控制策略。实际SVC存在模型参数不确定及状态变量不完全可测的问题,故利用滑模控制算法,设计基于鲁棒观测器的SVC附加滑模电压控制器。为此,首先建立孤岛情况下包含SVC的风柴混合电力系统的数学模型;然后选择适当的比例切换面和趋近律到达条件,并基于观测器估计值来构造SVC鲁棒电压控制器;最后基于Matlab仿真平台搭建算例模型,对所设计SVC滑模电压控制器的鲁棒性进行验证。仿真结果表明,所设计的SVC滑模电压控制器与传统的SVC控制策略相比,可有效抑制电压波动。展开更多
文摘A novel coordinated controller is proposed in the paper for SVC, excitation and steam valving for a single machine infinite system. Firstly, the nonlinear mathematic model of the system including the itation and steam valving is exactly linearized via state feedback. Then, the quasi-linearized system after the exact lineariztion is controlled by the sliding model controller based on Lyapunov direct method. At last, the novel coordinated controller is compared with a traditional linear controller and a nonlinear optimal controller respectively by simulations. The simulation results show that the proposed controller gives better dynamic response and stronger robustness.
文摘This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two main objectives of the controller design, damping low frequencies oscillations and enhancing power system stability. This method relies on shaping the closed-loop sensitivity functions in the Nyquist plot under the constraints of these functions. These constraints can be linearized by choosing a desired open-loop transfer function. The robust controller is designed to minimize the error between the open-loop of the original plant model and the desired transfer functions. These outcomes can be achieved by using convex optimization methods. Convexity of the problem formulation ensures global optimality. One of the advantages of the proposed approach is that the approach accounts for multi-model uncertainty. In contrast to the methods available in the literature, the proposed approach deals with full-order model (i.e., model reduction is not required) with lower controller order. The issue of time delay of feedback signals has been addressed in this paper for different values of time delay by applying a multi-model optimization technique. The proposed approach is compared to other existing techniques to design a robust controller which is based on H2 under pole placement. Both techniques are applied to the 68-bus system to evaluate and validate the robust controller performance under different load scenarios and different wind generations.
文摘针对独立风柴混合电力系统中风能和无功负荷变化所引起的电压波动问题,提出了利用静止无功补偿器(static var compensator,SVC)稳定电压的控制策略。实际SVC存在模型参数不确定及状态变量不完全可测的问题,故利用滑模控制算法,设计基于鲁棒观测器的SVC附加滑模电压控制器。为此,首先建立孤岛情况下包含SVC的风柴混合电力系统的数学模型;然后选择适当的比例切换面和趋近律到达条件,并基于观测器估计值来构造SVC鲁棒电压控制器;最后基于Matlab仿真平台搭建算例模型,对所设计SVC滑模电压控制器的鲁棒性进行验证。仿真结果表明,所设计的SVC滑模电压控制器与传统的SVC控制策略相比,可有效抑制电压波动。