Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in induci...Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters.展开更多
Nowadays,the application of Fungi as a bio-mediated soil improvement technique is developing.The hydraulic properties of Rhizopus Fungi-Mycelium Treated Soil are unknown,and the treated sample tends to have low durabi...Nowadays,the application of Fungi as a bio-mediated soil improvement technique is developing.The hydraulic properties of Rhizopus Fungi-Mycelium Treated Soil are unknown,and the treated sample tends to have low durability.This article presents experimental results on the hydraulic conductivity and shear strength of Fungi-mycelium-treated silica sand.The fungi used in the experiments are a combination ofRhizopus oligosporus andRhizopus oryzae,which are popular for making Tempeh,a local soybean cuisine from Indonesia.The samples were prepared by mixing the sand with Tempeh inoculum at various treatments and Tempe inoculum and rice flour dosages for enhancing the durability of the treated soil.The results showed that the saturated permeability of the treated soil could be reduced by about 10 times compared to the untreated soil.In addition,the Soil-Water Characteristic Curve of the treated soil also developed.The effect of the fungi appears to fill the void of soil and hence increases the Air Entry Value and residual suction of soil.The curing method outside the mold(O-method)with 10%Tempeh inoculum,and 5%Tempeh inoculum with 5%rice flour is proven can extend the durability of the treated sample,the undrained compressive strength is about 40 kPa on day 14.Scanning electron microscope was performed on the samples,which lasted for 4 months.The mycelium and hyphae are still clearly seen covering all sand particles with different percentages of Tempeh inoculum and rice flour.When the mycelium covered all the sand particles and filled the pores,the water flow was partially blocked.It might be attributed to the strong hydrophobicity of the fungi,which could prevent water from penetrating the soil.展开更多
Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving ...Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving unsaturated soils. Determining SWCC can be achieved by fitting data points obtained according to the prescribed experimental scheme, which is specified by the number of measuring points and their corresponding values of the control variable. The number of measuring points is limited since direct measurement of SWCC is often costly and time-consuming. Based on the limited number of measuring points, the estimated SWCC is unavoidably associated with uncertainties, which depends on measurement data obtained from the prescribed experimental scheme. Therefore, it is essential to plan the experimental scheme so as to reduce the uncertainty in the estimated SWCC. This study presented a Bayesian approach, called OBEDO, for probabilistic experimental design optimization of measuring SWCC based on the prior knowledge and information of testing apparatus. The uncertainty in estimated SWCC is quantified and the optimal experimental scheme with the maximum expected utility is determined by Subset Simulation optimization (SSO) in candidate experimental scheme space. The proposed approach is illustrated using an experimental design example given prior knowledge and the information of testing apparatus and is verified based on a set of real loess SWCC data, which were used to generate random experimental schemes to mimic the arbitrary arrangement of measuring points during SWCC testing in practice. Results show that the arbitrary arrangement of measuring points of SWCC testing is hardly superior to the optimal scheme obtained from OBEDO in terms of the expected utility. The proposed OBEDO approach provides a rational tool to optimize the arrangement of measuring points of SWCC test so as to obtain SWCC measurement data with relatively high expected utility for uncertainty reduction.展开更多
利用基于轴平移技术的Geo-Expert高级型应力相关土-水特征曲线压力板仪研究不同覆土压力(0、40、100、200 k Pa)对南阳膨胀土土水特征曲线(soil-water characteristic curve,SWCC)的影响;并对提出的考虑土体变形及多孔隙分布形态的双应...利用基于轴平移技术的Geo-Expert高级型应力相关土-水特征曲线压力板仪研究不同覆土压力(0、40、100、200 k Pa)对南阳膨胀土土水特征曲线(soil-water characteristic curve,SWCC)的影响;并对提出的考虑土体变形及多孔隙分布形态的双应力变量广义SWCC表征方程进行如下试验验证:1)不同覆土压力下微多孔隙分布形态的南阳膨胀土侧限固结试验及脱湿试验SWCC验证;2)零净法向应力状态双孔隙尺度硅藻土双峰SWCC试验验证;3)不同净围压状态下单孔隙尺度韩国残积土SWCC试验验证;4)多应力路径下法国Bapaume黄土,不同初始干密度下日本Edosaki砂土在脱湿-吸湿过程SWCC试验验证;并比较分析新方程与van Genuchten方程及Fredlund等方程的差异性。结果表明:1)覆土压力会显著改变膨胀土结构及孔隙通道,进而改变SWCC边界效应区、过渡区形态;也改变了双重孔隙尺度土壤的进气值;第1个波峰SWCC进气值均在1 k Pa左右;相比于零覆土压力试样,40、100、200 k Pa覆土压力试样第2个波峰SWCC进气值分别高4.74、17.58、67.23 k Pa;2)未考虑净法向应力影响的单应力状态多峰SWCC、考虑侧限双应力状态多峰SWCC、各向同性净法向应力单峰SWCC、不同脱湿-吸湿路径SWCC及不同初始干密度的SWCC试验拟合曲线均表明,双应力广义SWCC具有包容复杂影响因素的能力;3)新方程能够利用至少3个土-水数据即可拟合出具有较高的精度的整条SWCC。研究为定量描述土壤的持水、渗透及强度特性提供参考。展开更多
基金the financial support for the research presented in this paper from National Natural Science Foundation of China(42201142,42067066,51778590)。
文摘Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters.
文摘Nowadays,the application of Fungi as a bio-mediated soil improvement technique is developing.The hydraulic properties of Rhizopus Fungi-Mycelium Treated Soil are unknown,and the treated sample tends to have low durability.This article presents experimental results on the hydraulic conductivity and shear strength of Fungi-mycelium-treated silica sand.The fungi used in the experiments are a combination ofRhizopus oligosporus andRhizopus oryzae,which are popular for making Tempeh,a local soybean cuisine from Indonesia.The samples were prepared by mixing the sand with Tempeh inoculum at various treatments and Tempe inoculum and rice flour dosages for enhancing the durability of the treated soil.The results showed that the saturated permeability of the treated soil could be reduced by about 10 times compared to the untreated soil.In addition,the Soil-Water Characteristic Curve of the treated soil also developed.The effect of the fungi appears to fill the void of soil and hence increases the Air Entry Value and residual suction of soil.The curing method outside the mold(O-method)with 10%Tempeh inoculum,and 5%Tempeh inoculum with 5%rice flour is proven can extend the durability of the treated sample,the undrained compressive strength is about 40 kPa on day 14.Scanning electron microscope was performed on the samples,which lasted for 4 months.The mycelium and hyphae are still clearly seen covering all sand particles with different percentages of Tempeh inoculum and rice flour.When the mycelium covered all the sand particles and filled the pores,the water flow was partially blocked.It might be attributed to the strong hydrophobicity of the fungi,which could prevent water from penetrating the soil.
文摘Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving unsaturated soils. Determining SWCC can be achieved by fitting data points obtained according to the prescribed experimental scheme, which is specified by the number of measuring points and their corresponding values of the control variable. The number of measuring points is limited since direct measurement of SWCC is often costly and time-consuming. Based on the limited number of measuring points, the estimated SWCC is unavoidably associated with uncertainties, which depends on measurement data obtained from the prescribed experimental scheme. Therefore, it is essential to plan the experimental scheme so as to reduce the uncertainty in the estimated SWCC. This study presented a Bayesian approach, called OBEDO, for probabilistic experimental design optimization of measuring SWCC based on the prior knowledge and information of testing apparatus. The uncertainty in estimated SWCC is quantified and the optimal experimental scheme with the maximum expected utility is determined by Subset Simulation optimization (SSO) in candidate experimental scheme space. The proposed approach is illustrated using an experimental design example given prior knowledge and the information of testing apparatus and is verified based on a set of real loess SWCC data, which were used to generate random experimental schemes to mimic the arbitrary arrangement of measuring points during SWCC testing in practice. Results show that the arbitrary arrangement of measuring points of SWCC testing is hardly superior to the optimal scheme obtained from OBEDO in terms of the expected utility. The proposed OBEDO approach provides a rational tool to optimize the arrangement of measuring points of SWCC test so as to obtain SWCC measurement data with relatively high expected utility for uncertainty reduction.
文摘利用基于轴平移技术的Geo-Expert高级型应力相关土-水特征曲线压力板仪研究不同覆土压力(0、40、100、200 k Pa)对南阳膨胀土土水特征曲线(soil-water characteristic curve,SWCC)的影响;并对提出的考虑土体变形及多孔隙分布形态的双应力变量广义SWCC表征方程进行如下试验验证:1)不同覆土压力下微多孔隙分布形态的南阳膨胀土侧限固结试验及脱湿试验SWCC验证;2)零净法向应力状态双孔隙尺度硅藻土双峰SWCC试验验证;3)不同净围压状态下单孔隙尺度韩国残积土SWCC试验验证;4)多应力路径下法国Bapaume黄土,不同初始干密度下日本Edosaki砂土在脱湿-吸湿过程SWCC试验验证;并比较分析新方程与van Genuchten方程及Fredlund等方程的差异性。结果表明:1)覆土压力会显著改变膨胀土结构及孔隙通道,进而改变SWCC边界效应区、过渡区形态;也改变了双重孔隙尺度土壤的进气值;第1个波峰SWCC进气值均在1 k Pa左右;相比于零覆土压力试样,40、100、200 k Pa覆土压力试样第2个波峰SWCC进气值分别高4.74、17.58、67.23 k Pa;2)未考虑净法向应力影响的单应力状态多峰SWCC、考虑侧限双应力状态多峰SWCC、各向同性净法向应力单峰SWCC、不同脱湿-吸湿路径SWCC及不同初始干密度的SWCC试验拟合曲线均表明,双应力广义SWCC具有包容复杂影响因素的能力;3)新方程能够利用至少3个土-水数据即可拟合出具有较高的精度的整条SWCC。研究为定量描述土壤的持水、渗透及强度特性提供参考。