Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di...Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries.展开更多
The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrot...The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.展开更多
钠离子电池(SIBs)的阳极材料一直备受研究关注,但缓慢的动力学行为和较大的体积变化限制了其在实际应用中的推广。为了克服这些问题,本研究利用金属有机框架和MoS_(2)的优异性能,设计并制备了具有稳定骨架结构的复合材料。以Co-ZIF为前...钠离子电池(SIBs)的阳极材料一直备受研究关注,但缓慢的动力学行为和较大的体积变化限制了其在实际应用中的推广。为了克服这些问题,本研究利用金属有机框架和MoS_(2)的优异性能,设计并制备了具有稳定骨架结构的复合材料。以Co-ZIF为前驱体,添加Mo源材料,在高温硫化烧结的过程中,构建了花状的Co_(9)S_(8)/MoS_(2)/C复合材料,探究其在不同温度条件下的结构和电化学性能。此外,通过密度泛函理论(DFT)分析了Co9S8(001)/MoS2异质结对扩散动力学的影响。结果表明,电子结构在异质结构的界面处发生了重塑,Co_(9)S_(8)/MoS_(2)表现出典型的金属性和显著增强的电子导电性。在所有样品中,700℃合成的阳极材料Co_(9)S_(8)/MoS_(2)/C具有更稳定的结构和优异的电化学性能。当电流密度从4000恢复到40 mA g^(-1)时,Co_(9)S_(8)/MoS_(2)/C-700的放电容量可以从368 mAh g^(-1)完全恢复到571 mAh g^(-1),并稳定在543 mAh g^(-1)。综上所述,本研究提供了一些关于异质结材料合理制备的思路,有助于设计高性能的金属钠离子电池负极复合材料。展开更多
基金Financial supports from the National Natural Science Foundation of China(22265018 and 21961019)the Key Project of Natural Science Foundation of Jiangxi Province(20232ACB204010)。
文摘Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries.
基金This work was supported by the National Natural Science Foundation of China(No.51477002)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2019-028).
文摘The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.
文摘钠离子电池(SIBs)的阳极材料一直备受研究关注,但缓慢的动力学行为和较大的体积变化限制了其在实际应用中的推广。为了克服这些问题,本研究利用金属有机框架和MoS_(2)的优异性能,设计并制备了具有稳定骨架结构的复合材料。以Co-ZIF为前驱体,添加Mo源材料,在高温硫化烧结的过程中,构建了花状的Co_(9)S_(8)/MoS_(2)/C复合材料,探究其在不同温度条件下的结构和电化学性能。此外,通过密度泛函理论(DFT)分析了Co9S8(001)/MoS2异质结对扩散动力学的影响。结果表明,电子结构在异质结构的界面处发生了重塑,Co_(9)S_(8)/MoS_(2)表现出典型的金属性和显著增强的电子导电性。在所有样品中,700℃合成的阳极材料Co_(9)S_(8)/MoS_(2)/C具有更稳定的结构和优异的电化学性能。当电流密度从4000恢复到40 mA g^(-1)时,Co_(9)S_(8)/MoS_(2)/C-700的放电容量可以从368 mAh g^(-1)完全恢复到571 mAh g^(-1),并稳定在543 mAh g^(-1)。综上所述,本研究提供了一些关于异质结材料合理制备的思路,有助于设计高性能的金属钠离子电池负极复合材料。