期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
近红外技术结合SaE-ELM用于烤烟烘烤关键参数的在线监测 被引量:10
1
作者 宾俊 范伟 +4 位作者 周冀衡 李鑫 梁逸曾 肖志新 刘芮 《烟草科技》 EI CAS CSCD 北大核心 2016年第9期50-56,共7页
自适应进化极限学习机(SaE-ELM)是一种利用自适应差分进化算法优化隐层输入参数的单隐层前馈神经网络学习算法。为了解决烟叶密集烘烤过程中关键参数难以测定的难题,应用近红外光谱技术结合SaE-ELM,采用交叉验证选择隐含层节点个数,对... 自适应进化极限学习机(SaE-ELM)是一种利用自适应差分进化算法优化隐层输入参数的单隐层前馈神经网络学习算法。为了解决烟叶密集烘烤过程中关键参数难以测定的难题,应用近红外光谱技术结合SaE-ELM,采用交叉验证选择隐含层节点个数,对烘烤过程中含水率,以及叶绿素和淀粉含量3个关键参数的动态变化进行了监测。结果表明:烟叶含水率、叶绿素和淀粉模型预测相关系数分别为0.931 2、0.917 6和0.916 7,与偏最小二乘(PLS)回归、BP神经网络、支持向量机(SVM)回归和极限学习机(ELM)模型相比,SaE-ELM模型参数自动优化、性能优越、泛化能力强、预测结果最好。因此,采用近红外技术结合SaE-ELM能准确测定烟叶烘烤过程中关键参数的变化规律,可为烟叶烘烤调控工艺提供技术参考。 展开更多
关键词 近红外光谱 自适应进化极限学习机(sae-elm) 烟叶烘烤 含水率 叶绿素 淀粉
下载PDF
基于SAE-ELM的电动汽车充电站负荷预测模型 被引量:12
2
作者 龚钢军 安晓楠 +4 位作者 陈志敏 张帅 文亚凤 吴秋新 苏畅 《现代电力》 北大核心 2019年第6期9-15,共7页
电动汽车(electric vehicle,EV)用户充电行为在时间和空间上的随机性增加了EV充电站负荷预测的难度,为此以提高负荷预测的准确度为目的,通过改进深度学习中的栈式自编码器提出栈式自编码器-极限学习机(SAEELM)的混合模型,并深入研究EV... 电动汽车(electric vehicle,EV)用户充电行为在时间和空间上的随机性增加了EV充电站负荷预测的难度,为此以提高负荷预测的准确度为目的,通过改进深度学习中的栈式自编码器提出栈式自编码器-极限学习机(SAEELM)的混合模型,并深入研究EV与电网的交互模式;综合考虑影响充电站负荷量的关键因素,如历史负荷、环境、日类型等,对某地充电站进行短期负荷预测并验证;最后与SAE-BP、ELM算法做对比实验,实验结果表明SAEELM对充电站的短期负荷预测更加有效准确,更有利于电网稳定运行。 展开更多
关键词 电动汽车充电站 负荷预测 深度学习 SAEELM
下载PDF
CMWPE结合SaE-ELM的轮对轴承故障诊断方法 被引量:2
3
作者 张龙 彭小明 +2 位作者 熊国良 吴荣真 胡俊锋 《机械科学与技术》 CSCD 北大核心 2023年第4期512-520,共9页
针对DF4型内燃机车轮对轴承不同故障状态的判别问题,提出了一种基于复合多尺度加权排列熵(Composit multiscale weighted permutation entropy, CMWPE)和自适应进化极限学习机(Self-adaptive evolutionary extreme learning machine, Sa... 针对DF4型内燃机车轮对轴承不同故障状态的判别问题,提出了一种基于复合多尺度加权排列熵(Composit multiscale weighted permutation entropy, CMWPE)和自适应进化极限学习机(Self-adaptive evolutionary extreme learning machine, SaE-ELM)的机车轮对轴承故障识别方法。CMWPE基于复合粗粒化和加权排列熵的思想,能很好地区分信号的不同模式。SaE-ELM通过自适应进化算法对极限学习机的输入权重、隐含层参数和输出权重进行优化,解决了ELM随机选取网络参数的局限性,提高了网络的泛化性能。计算机车轮对轴承不同健康状态下振动信号的CMWPE,利用SaE-ELM识别轴承所属故障类型及故障程度。在机务段的JL-501轴承检测台上采集了7种不同健康状态的轮对轴承试件的振动信号数据。结果表明:CMWPE特征提取效果优于MPE和MWPE;SaE-ELM模式识别效果优于参数不经优化的ELM。所提方法能够有效诊断机车轮对轴承的不同故障,且故障识别率达到100%。 展开更多
关键词 机车轮对轴承 故障诊断 特征提取 模式识别 复合多尺度加权排列熵 自适应进化极限学习机
下载PDF
改进的极限学习机在癫痫脑电分类中的应用 被引量:4
4
作者 王杰 李牧潇 《计算机仿真》 CSCD 北大核心 2014年第6期343-346,351,共5页
研究癫痫脑部疾患的脑电分类识别问题,由于癫痫是大脑神经元异常和过度的超同步化放电所造成的临床现象,脑电图(EEG)是目前最常用的监测与诊断癫痫疾病的方法。由脑电图仪监测得到的脑电信号数量巨大,单凭人工的诊断十分耗时,且有可能... 研究癫痫脑部疾患的脑电分类识别问题,由于癫痫是大脑神经元异常和过度的超同步化放电所造成的临床现象,脑电图(EEG)是目前最常用的监测与诊断癫痫疾病的方法。由脑电图仪监测得到的脑电信号数量巨大,单凭人工的诊断十分耗时,且有可能因为主观因素而产生误判。为了提高对癫痫脑电信号的自动识别和诊断的准确性,提出了样本熵(SampEn)与AR模型特征提取以及自适应差分进化极限学习机(SaE-ELM)相结合的方法来达到识别癫痫脑电信号的目的。实验表明采用上述特征提取及分类算法可达到97%的分类准确度,验证了上述方法的有效性。 展开更多
关键词 癫痫脑电 样本熵 自适应差分进化极限学习机
下载PDF
基于稀疏自编码和极限学习机的局部放电模式识别 被引量:5
5
作者 何金 曹梦 +3 位作者 王伟 朱旭亮 邢向上 陈荣 《高压电器》 CAS CSCD 北大核心 2018年第11期295-300,306,共7页
传统的局部放电模式识别方法识别正确率低,或者训练时间长。文中提出了一种新的局部放电模式识别算法,绘制局部放电信号的PRPS图谱作为输入数据,采用基于稀疏自编码器(sparse autoencoder,SAE)实现对PRPS图谱的特征提取和降维,得到能高... 传统的局部放电模式识别方法识别正确率低,或者训练时间长。文中提出了一种新的局部放电模式识别算法,绘制局部放电信号的PRPS图谱作为输入数据,采用基于稀疏自编码器(sparse autoencoder,SAE)实现对PRPS图谱的特征提取和降维,得到能高度表达原始数据的低维特征空间。利用极限学习机(extremelearning machine,ELM)网络作为分类器,实现对局部放电的分类。利用实验得到的数据样本测试该算法,结果表明该算法不仅模式识别正确率高,并且训练速度快。 展开更多
关键词 局部放电 稀疏自编码器 ELM 模式识别
下载PDF
一种基于BOA-SAE-EELM的光伏阵列故障诊断方法 被引量:1
6
作者 陈世群 杨耿杰 高伟 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期154-161,共8页
光伏阵列非线性输出的特性以及最大功率点跟踪算法,会影响光伏阵列保护设备的工作。为了正确辨识光伏阵列的运行状态,本研究提出一种基于贝叶斯优化算法(BOA)、堆栈自动编码器(SAE)以及集成极限学习机(EELM)相结合的故障诊断方法。首先... 光伏阵列非线性输出的特性以及最大功率点跟踪算法,会影响光伏阵列保护设备的工作。为了正确辨识光伏阵列的运行状态,本研究提出一种基于贝叶斯优化算法(BOA)、堆栈自动编码器(SAE)以及集成极限学习机(EELM)相结合的故障诊断方法。首先,将光伏阵列的时序波形进行标准化处理;接着,使用SAE对标准化后的时序波形进行特征自动提取,并训练一个EELM的故障分类模型;最后,利用BOA对诊断模型的超参数进行优化。实验结果表明所提方法对仿真和实验的故障诊断准确率分别达到了98.40%和98.10%,优于反向传播(BP)神经网络、支持向量机、随机森林等方法。 展开更多
关键词 光伏阵列 故障诊断 堆栈自动编码器 极限学习机 贝叶斯优化算法 时序波形
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部