The yeast HAL1 gene was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation with vacuum infiltration under the control of CaMV 35S promoter. Thirty-three individual kanamycin resi...The yeast HAL1 gene was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation with vacuum infiltration under the control of CaMV 35S promoter. Thirty-three individual kanamycin resistant plants were obtained from 75,000 seeds. Southern blotting analysis indicated that HAL1 gene had been integrated into all of the transgenic plants’ genomes. The copy number of HAL1 gene in transgenic plants was mostly 1 to 3 by Southern analysis. Phenotypes of transgenic plants have no differences with wild type plants. several samples of transformants were self-pollinated, and progenies from transformed and non-transformed plants (controls) were evaluated for salt tolerance and gene expression. Measurement of concentrations of intracellular K+ and Na+ showed that transgenic lines were able to retain less Na+ than that of the control under salt stress. Results from different tests indicated the expression of HAL1 gene promotes a higher level of salt tolerance in vivo in the transgenic Arabidopsis plants.展开更多
为了增强纯生啤酒的泡沫性能,从酿酒酵母表达质粒YEplac181出发,将大麦脂转移蛋白1(LTP1)成熟肽的编码序列置于酿酒酵母ADH1启动子(alcohol dehydrogenase promoter)和CYC1终止子(cytochrome C terminator)的调控下,构建大麦脂转移蛋白...为了增强纯生啤酒的泡沫性能,从酿酒酵母表达质粒YEplac181出发,将大麦脂转移蛋白1(LTP1)成熟肽的编码序列置于酿酒酵母ADH1启动子(alcohol dehydrogenase promoter)和CYC1终止子(cytochrome C terminator)的调控下,构建大麦脂转移蛋白1的酿酒酵母表达质粒YEp181-KAMLC。通过酿酒酵母α-信息素信号肽的引导分泌,酿酒酵母表达的成熟大麦LTP1被分泌到发酵液中。对发酵液的检测表明,在发酵132h后LTP1的产量可达到29.45mg/L。展开更多
Cell-free protein synthesis(CFPS)systems from crude lysates have benefitted from modifications to their enzyme composition.For example,functionally deleting enzymes in the source strain that are deleterious to CFPS ca...Cell-free protein synthesis(CFPS)systems from crude lysates have benefitted from modifications to their enzyme composition.For example,functionally deleting enzymes in the source strain that are deleterious to CFPS can improve protein synthesis yields.However,making such modifications can take substantial time.As a proof-of-concept to accelerate prototyping capabilities,we assessed the feasibility of using the yeast knockout collection to identify negative effectors in a Saccharomyces cerevisiae CFPS platform.We analyzed extracts made from six deletion strains that targeted the single deletion of potentially negative effectors(e.g.,nucleases).We found a statistically significant increase in luciferase yields upon loss of function of GCN3,PEP4,PPT1,NGL3,and XRN1 with a maximum increase of over 6-fold as compared to the wild type.Our work has implications for yeast CFPS and for rapidly prototyping strains to enable cell-free synthetic biology applications.展开更多
基金a grant from State 863 National High Technology Research Development Project of China, No. 819-0803.
文摘The yeast HAL1 gene was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation with vacuum infiltration under the control of CaMV 35S promoter. Thirty-three individual kanamycin resistant plants were obtained from 75,000 seeds. Southern blotting analysis indicated that HAL1 gene had been integrated into all of the transgenic plants’ genomes. The copy number of HAL1 gene in transgenic plants was mostly 1 to 3 by Southern analysis. Phenotypes of transgenic plants have no differences with wild type plants. several samples of transformants were self-pollinated, and progenies from transformed and non-transformed plants (controls) were evaluated for salt tolerance and gene expression. Measurement of concentrations of intracellular K+ and Na+ showed that transgenic lines were able to retain less Na+ than that of the control under salt stress. Results from different tests indicated the expression of HAL1 gene promotes a higher level of salt tolerance in vivo in the transgenic Arabidopsis plants.
文摘为了增强纯生啤酒的泡沫性能,从酿酒酵母表达质粒YEplac181出发,将大麦脂转移蛋白1(LTP1)成熟肽的编码序列置于酿酒酵母ADH1启动子(alcohol dehydrogenase promoter)和CYC1终止子(cytochrome C terminator)的调控下,构建大麦脂转移蛋白1的酿酒酵母表达质粒YEp181-KAMLC。通过酿酒酵母α-信息素信号肽的引导分泌,酿酒酵母表达的成熟大麦LTP1被分泌到发酵液中。对发酵液的检测表明,在发酵132h后LTP1的产量可达到29.45mg/L。
基金YKO collection strains were generously provided by the Northwestern High Throughput Core.We acknowledge Northwestern University and the DARPA Biomedicines on Demand program(N66001-13-C-4024)for support.J.A.S.was supported by the National Science Foundation Graduate Research Fellowship,grant number DGE-1324585.
文摘Cell-free protein synthesis(CFPS)systems from crude lysates have benefitted from modifications to their enzyme composition.For example,functionally deleting enzymes in the source strain that are deleterious to CFPS can improve protein synthesis yields.However,making such modifications can take substantial time.As a proof-of-concept to accelerate prototyping capabilities,we assessed the feasibility of using the yeast knockout collection to identify negative effectors in a Saccharomyces cerevisiae CFPS platform.We analyzed extracts made from six deletion strains that targeted the single deletion of potentially negative effectors(e.g.,nucleases).We found a statistically significant increase in luciferase yields upon loss of function of GCN3,PEP4,PPT1,NGL3,and XRN1 with a maximum increase of over 6-fold as compared to the wild type.Our work has implications for yeast CFPS and for rapidly prototyping strains to enable cell-free synthetic biology applications.