期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Influence of pier height on the safety of trains running on high-speed railway bridges during earthquakes
1
作者 NIE Yu-tao GUO Wei +8 位作者 JIANG Li-zhong YU Zhi-wu ZENG Chen WANG Yang HE Xu-en REN Shao-xun HUANG Ren-qiang LIANG Guang-yue LI Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2102-2115,共14页
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper... Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation. 展开更多
关键词 pier height high-speed railway bridge running safety numerical model
下载PDF
Running safety assessment method of trains under seismic conditions based on the derailment risk domain
2
作者 Zhihui Zhu Gaoyang Zhou +2 位作者 Weiqi Zheng Wei Gong Yongjiu Tang 《Railway Engineering Science》 EI 2024年第4期499-517,共19页
The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud... The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk. 展开更多
关键词 Earthquake High-speed train running safety Wheel–rail contact Derailment risk domain
下载PDF
A novel refined dynamic model of high-speed maglev train-bridge coupled system for random vibration and running safety assessment
3
作者 MAO Jian-feng LI Dao-hang +3 位作者 YU Zhi-wu CAI Wen-feng GUO Wei ZHANG Guang-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2532-2544,共13页
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b... Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval. 展开更多
关键词 maglev train-bridge interaction electromagnetic force-air gap model stochastic dynamic analysis running safety assessment probability density evolution method
下载PDF
Safety of the express freight train running over a long-span bridge
4
作者 Jingcheng Wen Yihao Qin +1 位作者 Ye Bai Xiaoqing Dong 《Railway Sciences》 2024年第4期469-479,共11页
Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of win... Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge.Besides,the blunt car body of vehicle has poor aerodynamic characteristics,bringing a greater challenge on the running stability in the crosswind.Design/methodology/approach-In this study,the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test.The dynamic model of the train-long-span steel truss bridge coupling system is established,and the dynamic response as well as the running safety of vehicle are evaluated.Findings-The results show that wind speed has a significant influence on running safety,which is mainly reflected in the over-limitation of wheel unloading rate.The wind speed limit decreases with train speed,and it reduces to 18.83 m/s when the train speed is 160 km/h.Originality/value-This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems.It also provides a new theoretical basis for the safety assessment of express freight trains. 展开更多
关键词 Express freight train Long-span bridge CROSSWIND Wind tunnel test running safety Paper type Research paper
下载PDF
Running safety analysis of a train on the Tsing Ma Bridge under turbulent winds 被引量:11
5
作者 Guo Weiwei Xia He Xu Youlin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期307-318,共12页
The dynamic responses of the Tsing Ma suspension bridge and the running behaviors of trains on the bridge under turbulent wind actions are analyzed by a three-dimensional wind-train-bridge interaction model. This mode... The dynamic responses of the Tsing Ma suspension bridge and the running behaviors of trains on the bridge under turbulent wind actions are analyzed by a three-dimensional wind-train-bridge interaction model. This model consists of a spatial finite element bridge model, a train model composed of eight 4-axle identical coaches of 27 degrees-of-freedom, and a turbulent wind model. The fluctuating wind forces, including the buffeting forces and the self-excited forces, act on the bridge only, since the train runs inside the bridge deck. The dynamic responses of the bridge are calculated and some results are compared with data measured from Typhoon York. The runnability of the train passing through the Tsing Ma suspension bridge at different speeds is researched under turbulent winds with different wind velocities. Then, the threshold curve of wind velocity for ensuring the running safety of the train in the bridge deck is proposed, from which the allowable train speed at different wind velocities can be determined. The numerical results show that rail traffic on the Tsing Ma suspension bridge should be closed as the mean wind velocity reaches 30 m/s. 展开更多
关键词 Tsing Ma Bridge turbulent wind dynamic interaction running safety THRESHOLD wind velocity
下载PDF
Dynamic response limit of high-speed railway bridge under earthquake considering running safety performance of train 被引量:13
6
作者 LIU Xiang JIANG Li-zhong +3 位作者 XIANG Ping LAI Zhi-peng FENG Yu-lin CAO Shan-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期968-980,共13页
Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very n... Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined. 展开更多
关键词 high-speed railway bridge seismic design running safety performance measure limit
下载PDF
Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion 被引量:9
7
作者 Wei Gong Zhihui Zhu +3 位作者 Yu Liu Ruitao Liu Yongjiu Tang Lizhong Jiang 《Railway Engineering Science》 2020年第2期184-198,共15页
To explore the influence of spatially varying ground motion on the dynamic behavior of a train passing through a three-tower cable-stayed bridge,a 3D train–track–bridge coupled model is established for accurately si... To explore the influence of spatially varying ground motion on the dynamic behavior of a train passing through a three-tower cable-stayed bridge,a 3D train–track–bridge coupled model is established for accurately simulating the train–bridge interaction under earthquake excitation,which is made up of a vehicle model built by multi-body dynamics,a track–bridge finite element model,and a 3D rolling wheel–rail contact model.A conditional simulation method,which takes into consideration the wave passage effect,incoherence effect,and site-response effect,is adopted to simulate the spatially varying ground motion under different soil conditions.The multi-time-step method previously proposed by the authors is also adopted to improve computational efficiency.The dynamic responses of the train running on a three-tower cablestayed bridge are calculated with differing earthquake excitations and train speeds.The results indicate that(1)the earthquake excitation significantly increases the responses of the train–bridge system,but at a design speed,all the running safety indices meet the code requirements;(2)the incoherence and site-response effects should also be considered in the seismic analysis for long-span bridges though there is no fixed pattern for determining their influences;(3)different train speeds that vary the vibration characteristics of the train–bridge system affect the vibration frequencies of the car body and bridge. 展开更多
关键词 EARTHQUAKE Spatially varying ground motion Long-span bridges Nonlinear wheel-rail contact running safety
下载PDF
Spatial gust impact analysis on safety and comfort of a train crossing cable-stayed bridge combining statistical method 被引量:1
8
作者 ZHANG Yun-fei LI Li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2605-2620,共16页
In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressi... In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge. 展开更多
关键词 wind-train-bridge dynamic system high-speed train crosswind environment single-tower cable-stayed bridge running safety running stability
下载PDF
Seismic safety assessment of trains running on high-speed railway bridges with chloride-induced corroding piers 被引量:2
9
作者 GUO Wei WANG Yang +4 位作者 LIU HanYun YANG Na LIU Ming CAI YuJun ZHANG ZhuanZhuan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第2期320-335,共16页
For the lifetime assessment of the running safety of a train in aggressive environments and earthquake-prone areas,the effects of corrosion on seismic performance must be considered.Research on the running safety of t... For the lifetime assessment of the running safety of a train in aggressive environments and earthquake-prone areas,the effects of corrosion on seismic performance must be considered.Research on the running safety of trains,including corrosion damage,is limited,despite the fact that seismic safety assessment of trains on high-speed railway bridges has been extensively examined.In this work,the running safety of a train was evaluated using a time-varying corroded bridge finite-element model established in OpenSees.Two pier types were considered,and three ground-motion types were selected for performing seismic performance evaluations.Subsequently,the seismic response of the corroded bridge-track structure under an earthquake was analyzed.The spectrum intensity was used as the structural response index for the running safety assessment of trains under earthquakes,and the long-term safety of trains on bridges with different pier heights and earthquake types,considering different corroding deterioration,was evaluated.The results indicate that under low-level earthquakes,piers are primarily in a linear elastic state and least influenced by corrosion;whereas under high-level earthquakes,the running safety of trains on a bridge significantly deteriorates after corrosion,particularly for high-pier bridges,mainly because the corroded piers are more likely to yield lower post-yield stiffness.The results of this study suggest that in the seismic safety assessment of trains on corroded bridges,timevarying seismic performance characteristics should be considered. 展开更多
关键词 high-speed railway train running safety earthquake chloride-induced corroding time-varying performance
原文传递
A co-simulation method for the train-track-bridge interaction analysis under earthquake using Simpack and OpenSees 被引量:3
10
作者 TANG Jian-yuan GUO Wei +2 位作者 WANG Yang LI Jun-long ZENG Zhe-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2791-2806,共16页
Under high-level earthquakes,bridge piers and bearings are prone to be damaged and the elastoplastic state of bridge structural components is easily accessible in the train-track-bridge interaction(TTBI)system.Conside... Under high-level earthquakes,bridge piers and bearings are prone to be damaged and the elastoplastic state of bridge structural components is easily accessible in the train-track-bridge interaction(TTBI)system.Considering the complexity and structural non-linearity of the TTBI system under earthquakes,a single software is not adequate for the coupling analysis.Therefore,in this paper,an interactive method for the TTBI system is proposed by combining the multi-body dynamics software Simpack and the seismic simulation software OpenSees based on the Client-Server architecture,which takes full advantages of the powerful wheel-track contact analysis capabilities of Simpack and the sophisticated nonlinear analysis capabilities of OpenSees.Based on the proposed Simpack and OpenSees co-simulating train-track-bridge(SOTTB)method,a single-span bridge analysis under the earthquake was conducted and the accuracy of co-simulation method was verified by comparing it with results of the finite element model.Finally,the TTBI model is built utilizing the SOTTB method to further discuss the running safety of HST on multi-span simply supported bridges under earthquakes.The results show that the SOTTB method has the advantages of usability,high versatility and accuracy which can be further used to study the running safety of HST under earthquakes with high intensities. 展开更多
关键词 train-track-bridge system CO-SIMULATION SOTTB CLIENT-SERVER running safety
下载PDF
Seismic running safety of trains and a new type of seismic-isolation railway structure
11
作者 Xiu Luo 《Transportation Safety and Environment》 EI 2021年第2期152-165,共14页
Until now,seismic-isolation structures have not yet been applied in the railway field.The reason is that though a seismic-isolation structure can reduce the inertial force to the structure,the energy absorption causes... Until now,seismic-isolation structures have not yet been applied in the railway field.The reason is that though a seismic-isolation structure can reduce the inertial force to the structure,the energy absorption causes big response displacement on the structure,which adversely effects the running safety of the trains supported by the structure.In this paper,a methodology for seismic running safety assessment is introduced,and a new type of seismic-isolation foundation is proposed,which can convert the seismic response displacement in the lateral direction of track to the longitudinal direction that has a less adverse effect on the running safety of the train.The isolation foundation is composed of FPS(Friction Pendulum System)slider,concave plate and guide ditch.Moreover,through model experiments and 3D numerical simulation,it is verified that the proposed foundation can keep both the effects of the seismic isolation and the running safety of the train during an earthquake. 展开更多
关键词 seismic running safety of trains spectral intensity seismic-isolation foundation response-direction conversion system
原文传递
Studies on developing a safe-management standard system for Chinese biosafety laboratories 被引量:1
12
作者 Feng W Haixia Ma +2 位作者 Amei Deng ZongSheng C Zhiming Y 《Journal of Biosafety and Biosecurity》 2019年第1期39-45,共7页
Standardization management is one of the key prerequisites to guarantee the effective and safe functioning of high-level biosafety laboratories.Since the outbreak of SARS,increasing numbers of biosafety laboratory lev... Standardization management is one of the key prerequisites to guarantee the effective and safe functioning of high-level biosafety laboratories.Since the outbreak of SARS,increasing numbers of biosafety laboratory levels have been established in China.Therefore,creating a specialized and standardized management system for biosafety laboratories has become necessary and is a core concern.This paper describes the current status of Chinese standards for biosafety management and analyzes its relation to other laboratory biosafety standard systems in developed countries.Based on the analysis on developing a biosafety laboratory,a laboratory biosafety standard system framework was developed,and a policy environment for building the system was suggested with the aim of promoting the promulgation of specific biosafety standards and securing the effective functioning of high-level biosafety laboratories. 展开更多
关键词 Biosafety laboratories Standard system Management frame safety running
原文传递
Evaluation of power regeneration in primary suspension for a railway vehicle 被引量:1
13
作者 Ruichen WANG Zhiwei WANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2020年第2期265-278,共14页
To improve the fuel economy of rail vehicles,this study presents the feasibility of using power regenerating dampers(PRDs)in the primary suspension systems of railway vehicles and evaluates the potential and recoverab... To improve the fuel economy of rail vehicles,this study presents the feasibility of using power regenerating dampers(PRDs)in the primary suspension systems of railway vehicles and evaluates the potential and recoverable power that can be obtained.PRDs are configured as hydraulic electromagnetic-based railway primary vertical dampers and evaluated in parallel and series modes(with and without a viscous damper).Hydraulic configuration converts the linear behavior of the track into a unidirectional rotation of the generator,and the electromagnetic configuration provides a controllable damping force to the primary suspension system.In several case studies,generic railway vehicle primary suspension systems that are configured to include a PRD in the two configuration modes are modeled using computer simulations.The simulations are performed on measured tracks with typical irregularities for a generic UK passenger route.The performance of the modified vehicle is evaluated with respect to key performance indicators,including regenerated power,ride comfort,and running safety.Results indicate that PRDs can simultaneously replace conventional primary vertical dampers,regenerate power,and exhibit desirable dynamic performance.A peak power efficiency of 79.87%is theoretically obtained in series mode on a top-quality German Intercity Express track(Track 270)at a vehicle speed of 160 mile/h(~257 km/h). 展开更多
关键词 railway vehicle primary damper power regeneration ride comfort running safety
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部