A complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f = h + g^-, where h and g are analytic in U. We define and investigate a new class SHPλ(α...A complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f = h + g^-, where h and g are analytic in U. We define and investigate a new class SHPλ(α,β)by generalized Salagean operator of harmonic univalent functions. We give sufficient coefficient conditions for normalized harmonic functions in the class SHPλ(α,β) These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.展开更多
In this paper, we introduce a new class of p-valent analytic functions defined by using a linear operator Lαk . For functions in this class Hαk (p,λ;h) we estimate the coefficients. Furthermore, some subordinatio...In this paper, we introduce a new class of p-valent analytic functions defined by using a linear operator Lαk . For functions in this class Hαk (p,λ;h) we estimate the coefficients. Furthermore, some subordination properties related to the operator Lαk are also derived.展开更多
A complex-valued harmonic function that is univalent and sense preserving in the unit disk U can be written in the form of f = h + g,where h and g are analytic in U.We define and investigate a new class LH_λ(α,β) b...A complex-valued harmonic function that is univalent and sense preserving in the unit disk U can be written in the form of f = h + g,where h and g are analytic in U.We define and investigate a new class LH_λ(α,β) by generalized Salagean operator of harmonic univalent functions.We give sufficient coefficient conditions for normalized harmonic functions in the class LH_λ(α,β).These conditions are also shown to be necessary when the coefficients are negative.This leads to distortion bounds and extreme points.展开更多
Let S denote the class of functions that are analytic, normalized and univalent in the open unit disk E = {z: |z| S* and C respectively. A new subclass of analytic functions that generalize some known subclasses of an...Let S denote the class of functions that are analytic, normalized and univalent in the open unit disk E = {z: |z| S* and C respectively. A new subclass of analytic functions that generalize some known subclasses of analytic functions was defined and investigated. We obtained coefficient bounds, upper estimates for the Fekete-Szegö functional and the Hankel determinant.展开更多
基金Supported by the Key Scientific Research Fund of Inner Mongolian Educational Bureau (NJ04115)
文摘A complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form f = h + g^-, where h and g are analytic in U. We define and investigate a new class SHPλ(α,β)by generalized Salagean operator of harmonic univalent functions. We give sufficient coefficient conditions for normalized harmonic functions in the class SHPλ(α,β) These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.
文摘In this paper, we introduce a new class of p-valent analytic functions defined by using a linear operator Lαk . For functions in this class Hαk (p,λ;h) we estimate the coefficients. Furthermore, some subordination properties related to the operator Lαk are also derived.
基金Foundation item: Supported by the Natural Science Foundation of Inner Mongolia(2009MS0113) Supported by the Higher School Research Foundation of Inner Mongolia(NJzy08150)
文摘A complex-valued harmonic function that is univalent and sense preserving in the unit disk U can be written in the form of f = h + g,where h and g are analytic in U.We define and investigate a new class LH_λ(α,β) by generalized Salagean operator of harmonic univalent functions.We give sufficient coefficient conditions for normalized harmonic functions in the class LH_λ(α,β).These conditions are also shown to be necessary when the coefficients are negative.This leads to distortion bounds and extreme points.
文摘Let S denote the class of functions that are analytic, normalized and univalent in the open unit disk E = {z: |z| S* and C respectively. A new subclass of analytic functions that generalize some known subclasses of analytic functions was defined and investigated. We obtained coefficient bounds, upper estimates for the Fekete-Szegö functional and the Hankel determinant.