Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the so...Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the soil,and affect the growth of the plant.In this research,four different proportion of biochar was added in five different levels of saline-alkali soil for pot culture experiment.The pH of the soil increases as the proportion of biochar increase in same saline-alkali level soil,while the EC decrease as the proportion of biochar increase.The germination rate of wheat seeds varies as the different of soil's saline-alkali level.Notable among these results is the germination of wheat seeds in the serious saline-alkali soil without biochar added is 0,while in 45%biochar added in serious saline-alkali soil,the germination rate get to as high as 48.9%.Also,biochar improve the growth of wheat seedling,while for mild saline alkali soil and normal soil.Biochar had no obvious effect on the growth of wheat seedling.展开更多
Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1...Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1990s in west Jilin and analyze its physical and chemical properties in detail. The developing tendency of salinization was also inferred by comparing the saline-alkali soil of the 1980s with that of the 1990s. Finally, the natural and human factors leading to salinization are analyzed.展开更多
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig...Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.展开更多
Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chine...Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chinensis is a drought-tolerant plant that is widely distributed in the coastal saline-alkali soil of Bohai Bay, China. In this study, we used 454 pyrosequencing techniques to investigate the characteristics and distribution of the microbial diversity in coastal saline-alkali soil of the T. chinensis woodland at Bohai Bay. A total of 20,315 sequences were obtained, representing 19 known bacterial phyla and a large proportion of unclassified bacteria at the phylum level. Proteobacteria, Acidobacteria and Actinobacteria were the predominant phyla. The coverage of T. chinensis affected the microbial composition. At the phylum level, the relative abundance of y-Proteobacteria and Bacteroidetes decreased whereas Actinobacteria increased with the increasing coverage of T. chinensis. At the genus level, the proportions of Steroidobacter, Lechevalieria, Gp3 and Gp4 decreased with the increase of the vegetation coverage whereas the proportion of Nocardioides increased. A cluster analysis showed that the existing T. chinensis changed the niches for the microorganisms in the coastal saline-alkali soil, which caused changes in the microbial community. The analysis also distinguished the microbial community structure of the marginal area from those of the dense area and sparse area. Furthermore, the results also indicated that the distance to the seashore line could also affect certain groups of soil bacteria in this coastal saline-alkali soil, such as the family Cryomorphaceae and class Flavobacteria, whose population decreased as the distance increased. In addition, the seawater and temperature could be the driving factors that affected the changes.展开更多
If some suitable treatments are used plantations can be grown and established on the soil of soda-saline-alkali with the soil condition of PH 8.5- 9.6, salinity 0.1-0.3% and normality ratio of saline base Na+ / ( Ca++...If some suitable treatments are used plantations can be grown and established on the soil of soda-saline-alkali with the soil condition of PH 8.5- 9.6, salinity 0.1-0.3% and normality ratio of saline base Na+ / ( Ca+++ Mg++)≥4. From the results of plot inventory and tree stem analysis, the increment of Poplus simonigra is highest. For 9 years, the volume can reach 100 m3/ha, the biomass (above ground) can reach 28.7 ton/ha. Poplus simonigra grows very well on the all kinds of soda-saline-alkali soils except for the alkali spot with the worst soil condition. So Poplus simonigra is a good tree species for planting on the soil of soda-saline-alkali.展开更多
To test the variation and transport of soil salinity in saline- alkali land under water storage and drainage treatments,an experimental model was established in Fuping,Shaanxi Province,2009. The variation of soil sali...To test the variation and transport of soil salinity in saline- alkali land under water storage and drainage treatments,an experimental model was established in Fuping,Shaanxi Province,2009. The variation of soil salinity during 0- 160 cm soil depth under the two treatments was determined and analyzed. Results showed that the average soil water content under water storage treatment was 4. 47% higher than that under drainage treatment,which means that the water storage treatment could help to improve soil moisture to satisfy the crop's growth needs. The profile distribution of soil soluble solids( TDS),anion( Cl-,HCO3-,SO2-4) and cation( Ca2 +,Na+,K+) content and the variation of soil p H were also measured and analyzed. PCA( Principal Component Analysis) was used to explore the relationship between the soil salinity and its ions,which showed that the water storage treatment could significantly decrease the surface salinity of soil and accelerate the desalination of topsoils,and finally,the soil quality was improved significantly,demonstrating that the water storage treatment has a remarkable effect on soil salinity management.展开更多
Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil ...Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat.展开更多
This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, s...This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system.There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.展开更多
The dynamics of soil seed banks and seed movement was investigated in three bare alkali-saline patches in Songnen grassland, Northeast China, for exploring their potential role in the vegetation restoration of bare al...The dynamics of soil seed banks and seed movement was investigated in three bare alkali-saline patches in Songnen grassland, Northeast China, for exploring their potential role in the vegetation restoration of bare alkali-saline patches. The results showed that the seed banks and the seed movement in these patches were very similar to each other, and to some extent the seed movement was related to patch-side vegetation there. Seed movement across the soil surface of these bare alkali-saline patches was abundant and dominated by the seeds of pioneer species, such as Chloris virgata and Suaeda corniculata, which accounted for over 96% of these trapped seeds. In the contrast, soil seed banks of bare patches were extremely small, in different seasons, especially in May and June, even no any seed have been found, mainly due to lowest retaining capacity of surface soil to those abundant seed movement. Both soil seed banks and seed movement showed seasonal variation, and usually reached the maximum in October. Soil seed banks of bare alkali-saline patches, which were extremely small and difficult to recruit naturally, may inhibit speed of vegetation restoration. It is suggested that seed movement would be the potential seed source and play a potentially important role in the process of vegetation restoration of bare alkali-saline patches by enhancing the soft retaining capacity to seed movement.展开更多
Halophytes are valuable salt-, alkali- and drought-resistant germplasm resources. However, the char- acteristics of mineral elements in halophytes have not been investigated as intensively as those in crops. This stud...Halophytes are valuable salt-, alkali- and drought-resistant germplasm resources. However, the char- acteristics of mineral elements in halophytes have not been investigated as intensively as those in crops. This study attempted to investigate the characteristics of mineral elements for annual halophytes during their growth period to reveal their possible physiological mechanisms of salt resistance. By using three native annual halophytes (Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica) distributed in the desert in Northern Xinjiang of China, the dynamic changes in the mineral element contents of annual halophytes were analyzed through field sampling and laboratory analyses. The results demonstrated that the annual halophytes were able to absorb water and mineral nutrients selectively. In the interaction between the annual halophytes and saline soil, the adaptability of the annual halophytes was manifested as the accumulation of S, Na and CI during the growth period and maintenance of water and salt balance in the plant, thus ensuring their selective absorption of N, P, K, Ca, Mg and other mineral nutrients according to their growth demand. By utilizing this property, halophyte planting and mowing (before the wilting and death periods) could bioremediate heavy saline-alkali soil.展开更多
基金Supported by Natural Science Foundation of China(31200419)The Eleventh Five-Year Plan Science and Technology Foundation of Jilin Provincial Department of Education(2010-146)Natural Science Foundation of Changchun Normal University(2010-035)
文摘Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the soil,and affect the growth of the plant.In this research,four different proportion of biochar was added in five different levels of saline-alkali soil for pot culture experiment.The pH of the soil increases as the proportion of biochar increase in same saline-alkali level soil,while the EC decrease as the proportion of biochar increase.The germination rate of wheat seeds varies as the different of soil's saline-alkali level.Notable among these results is the germination of wheat seeds in the serious saline-alkali soil without biochar added is 0,while in 45%biochar added in serious saline-alkali soil,the germination rate get to as high as 48.9%.Also,biochar improve the growth of wheat seedling,while for mild saline alkali soil and normal soil.Biochar had no obvious effect on the growth of wheat seedling.
基金National Natural Science Foundation of China, No.49671077 Project of Jilin Provincial Committee for Science and Technology, No.
文摘Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1990s in west Jilin and analyze its physical and chemical properties in detail. The developing tendency of salinization was also inferred by comparing the saline-alkali soil of the 1980s with that of the 1990s. Finally, the natural and human factors leading to salinization are analyzed.
基金financially supported by the National Natural Science Foundation of China (51741908)
文摘Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.
基金funded by the National Natural Science Foundation of China(31470544,41271265)a special financial grant from the China Postdoctoral Science Foundation(2013T60900)the Science and Technology Projects in Gansu Province(1304NKCA135)
文摘Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chinensis is a drought-tolerant plant that is widely distributed in the coastal saline-alkali soil of Bohai Bay, China. In this study, we used 454 pyrosequencing techniques to investigate the characteristics and distribution of the microbial diversity in coastal saline-alkali soil of the T. chinensis woodland at Bohai Bay. A total of 20,315 sequences were obtained, representing 19 known bacterial phyla and a large proportion of unclassified bacteria at the phylum level. Proteobacteria, Acidobacteria and Actinobacteria were the predominant phyla. The coverage of T. chinensis affected the microbial composition. At the phylum level, the relative abundance of y-Proteobacteria and Bacteroidetes decreased whereas Actinobacteria increased with the increasing coverage of T. chinensis. At the genus level, the proportions of Steroidobacter, Lechevalieria, Gp3 and Gp4 decreased with the increase of the vegetation coverage whereas the proportion of Nocardioides increased. A cluster analysis showed that the existing T. chinensis changed the niches for the microorganisms in the coastal saline-alkali soil, which caused changes in the microbial community. The analysis also distinguished the microbial community structure of the marginal area from those of the dense area and sparse area. Furthermore, the results also indicated that the distance to the seashore line could also affect certain groups of soil bacteria in this coastal saline-alkali soil, such as the family Cryomorphaceae and class Flavobacteria, whose population decreased as the distance increased. In addition, the seawater and temperature could be the driving factors that affected the changes.
文摘If some suitable treatments are used plantations can be grown and established on the soil of soda-saline-alkali with the soil condition of PH 8.5- 9.6, salinity 0.1-0.3% and normality ratio of saline base Na+ / ( Ca+++ Mg++)≥4. From the results of plot inventory and tree stem analysis, the increment of Poplus simonigra is highest. For 9 years, the volume can reach 100 m3/ha, the biomass (above ground) can reach 28.7 ton/ha. Poplus simonigra grows very well on the all kinds of soda-saline-alkali soils except for the alkali spot with the worst soil condition. So Poplus simonigra is a good tree species for planting on the soil of soda-saline-alkali.
基金Supported by National Science and Technology Support Program(2014BAL01B03)
文摘To test the variation and transport of soil salinity in saline- alkali land under water storage and drainage treatments,an experimental model was established in Fuping,Shaanxi Province,2009. The variation of soil salinity during 0- 160 cm soil depth under the two treatments was determined and analyzed. Results showed that the average soil water content under water storage treatment was 4. 47% higher than that under drainage treatment,which means that the water storage treatment could help to improve soil moisture to satisfy the crop's growth needs. The profile distribution of soil soluble solids( TDS),anion( Cl-,HCO3-,SO2-4) and cation( Ca2 +,Na+,K+) content and the variation of soil p H were also measured and analyzed. PCA( Principal Component Analysis) was used to explore the relationship between the soil salinity and its ions,which showed that the water storage treatment could significantly decrease the surface salinity of soil and accelerate the desalination of topsoils,and finally,the soil quality was improved significantly,demonstrating that the water storage treatment has a remarkable effect on soil salinity management.
基金Supported by the Key Research and Development Program for Industrial Keytechnologies of Shandong Province(2016CYJS05A01-2)the Key Research and Development Program for Public Welfare of Shandong Province(2018GNC111001)the Special Fund for the Construction of Oversea Taishan Scholars
文摘Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat.
基金project is supported by the National Key R&D Program of China (No. 2016YFC0501307)the Key R&D Program of Ningxia Hui Autonomous Region (No. 2018BBF23008)
文摘This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system.There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.
基金The study was supported by the State Basic Research and Development Plan of China (G2000018602)
文摘The dynamics of soil seed banks and seed movement was investigated in three bare alkali-saline patches in Songnen grassland, Northeast China, for exploring their potential role in the vegetation restoration of bare alkali-saline patches. The results showed that the seed banks and the seed movement in these patches were very similar to each other, and to some extent the seed movement was related to patch-side vegetation there. Seed movement across the soil surface of these bare alkali-saline patches was abundant and dominated by the seeds of pioneer species, such as Chloris virgata and Suaeda corniculata, which accounted for over 96% of these trapped seeds. In the contrast, soil seed banks of bare patches were extremely small, in different seasons, especially in May and June, even no any seed have been found, mainly due to lowest retaining capacity of surface soil to those abundant seed movement. Both soil seed banks and seed movement showed seasonal variation, and usually reached the maximum in October. Soil seed banks of bare alkali-saline patches, which were extremely small and difficult to recruit naturally, may inhibit speed of vegetation restoration. It is suggested that seed movement would be the potential seed source and play a potentially important role in the process of vegetation restoration of bare alkali-saline patches by enhancing the soft retaining capacity to seed movement.
基金financially supported by the Scientific and Technological Project of Xinjiang Uygur Autonomous Region(201130106-2)the Innovation and Sustainable Development Research on Forest Carbon Sink in Karamay
文摘Halophytes are valuable salt-, alkali- and drought-resistant germplasm resources. However, the char- acteristics of mineral elements in halophytes have not been investigated as intensively as those in crops. This study attempted to investigate the characteristics of mineral elements for annual halophytes during their growth period to reveal their possible physiological mechanisms of salt resistance. By using three native annual halophytes (Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica) distributed in the desert in Northern Xinjiang of China, the dynamic changes in the mineral element contents of annual halophytes were analyzed through field sampling and laboratory analyses. The results demonstrated that the annual halophytes were able to absorb water and mineral nutrients selectively. In the interaction between the annual halophytes and saline soil, the adaptability of the annual halophytes was manifested as the accumulation of S, Na and CI during the growth period and maintenance of water and salt balance in the plant, thus ensuring their selective absorption of N, P, K, Ca, Mg and other mineral nutrients according to their growth demand. By utilizing this property, halophyte planting and mowing (before the wilting and death periods) could bioremediate heavy saline-alkali soil.