Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipita...Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipitation on the deterioration process. In view of this, the remoulded soil specimens were mixed with three kinds of salts(i.e., NaCl, Na_2SO_4 and their mixture) with different salt concentrations, and the specimens were kept in environment cabinet for undergoing different wet-dry cycles. After each cycle, the ultrasound velocity measurements were employed to monitor the deterioration process. For the specimens that have suffered three wet-dry cycles, the mechanical properties(i.e. shear strength and compression strength) were determined to evaluate the degree of deterioration. Furthermore, considering the realistic conservation environment of earthen sites, mechanical stability of these specimens against sediment-carrying wind erosion was conducted in a wind tunnel. These experiments results indicate that the overall average velocities of the specimens after the third cycle are significantly lower than those subjected to only one cycle. Ultrasound velocity, mechanical strength and wind erosion rate decrease when salt content increases. However, the internal friction angle increases firstly, and then decreases with the increase in salt content added to the specimens. Na_2SO_4 contributes most of the surface deterioration, while NaCl plays little role in the deterioration. The damage potential of the salt mixture is less obvious and largely dependent on the crystallisation location.展开更多
开发经济高效的析氧反应电催化剂对于推进可充电金属-空气电池和电解水技术的发展至关重要.一般来说,具有完整蜂窝结构的石墨碳基面是电化学惰性的,需要依赖缺陷或者掺杂结构诱导的电荷极化效应来提升催化活性.相比于基面,边缘位点具有...开发经济高效的析氧反应电催化剂对于推进可充电金属-空气电池和电解水技术的发展至关重要.一般来说,具有完整蜂窝结构的石墨碳基面是电化学惰性的,需要依赖缺陷或者掺杂结构诱导的电荷极化效应来提升催化活性.相比于基面,边缘位点具有特殊的局域电子态,为提升石墨碳电极的本征催化活性开辟了新的思路,然而其结构精准构筑目前仍面临极大挑战.本文以“人字形”多壁碳纳米管(H-MWCNTs)作为研究切入点,利用高温熔盐介质主导的插层剥离和截断效应,实现“边缘-平面位点”结构可控构筑,为实现高效电解水析氧反应(OER)提供了重要的结构基础.通过熔盐辅助热解方法可控制备了具有完全暴露的内外边缘平面的目标催化剂H-MWCNTs-MS,并研究其OER催化性能.在碱性介质中10 mA cm^(-2)电流密度所需过电位仅为236 mV,是目前报道的较好的非金属电催化剂.同时,H-MWCNTs-MS在10,50和100 mA cm^(-2)电流密度下均表现出较好的电化学稳定性.利用原位衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS)技术研究了“边缘-平面位点”在OER过程中的结构重构过程,与理论计算分析的高能“边缘态”结果一致,并确定酮氧官能化位点为真实催化活性中心.理论计算结果表明,氧官能团修饰结构能够显著促进电荷的再分配,增强层间耦合作用,降低关键含氧中间体*OOH的形成能垒,加速OER反应动力学.此外,H-MWCNTs-MS的开放式结构极大程度提高了“边缘-平面位点”的利用率,减小的纳米管壁厚促进了层间电荷迁移,也是增强OER活性的关键要素.综上,精准构筑“边缘-平面位点”为开发高效石墨碳电极开辟了新的思路,通过原位谱学技术揭示边缘位点催化结构重构,能够进一步丰富研究者对于电催化协同效应的科学认识.展开更多
基金Projects(2010BAK67B16,2013BAK08B11,2014BAK16B02)supported by the National Science and Technology Support Program of China during the 12th Five-year Plan Period
文摘Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipitation on the deterioration process. In view of this, the remoulded soil specimens were mixed with three kinds of salts(i.e., NaCl, Na_2SO_4 and their mixture) with different salt concentrations, and the specimens were kept in environment cabinet for undergoing different wet-dry cycles. After each cycle, the ultrasound velocity measurements were employed to monitor the deterioration process. For the specimens that have suffered three wet-dry cycles, the mechanical properties(i.e. shear strength and compression strength) were determined to evaluate the degree of deterioration. Furthermore, considering the realistic conservation environment of earthen sites, mechanical stability of these specimens against sediment-carrying wind erosion was conducted in a wind tunnel. These experiments results indicate that the overall average velocities of the specimens after the third cycle are significantly lower than those subjected to only one cycle. Ultrasound velocity, mechanical strength and wind erosion rate decrease when salt content increases. However, the internal friction angle increases firstly, and then decreases with the increase in salt content added to the specimens. Na_2SO_4 contributes most of the surface deterioration, while NaCl plays little role in the deterioration. The damage potential of the salt mixture is less obvious and largely dependent on the crystallisation location.
文摘开发经济高效的析氧反应电催化剂对于推进可充电金属-空气电池和电解水技术的发展至关重要.一般来说,具有完整蜂窝结构的石墨碳基面是电化学惰性的,需要依赖缺陷或者掺杂结构诱导的电荷极化效应来提升催化活性.相比于基面,边缘位点具有特殊的局域电子态,为提升石墨碳电极的本征催化活性开辟了新的思路,然而其结构精准构筑目前仍面临极大挑战.本文以“人字形”多壁碳纳米管(H-MWCNTs)作为研究切入点,利用高温熔盐介质主导的插层剥离和截断效应,实现“边缘-平面位点”结构可控构筑,为实现高效电解水析氧反应(OER)提供了重要的结构基础.通过熔盐辅助热解方法可控制备了具有完全暴露的内外边缘平面的目标催化剂H-MWCNTs-MS,并研究其OER催化性能.在碱性介质中10 mA cm^(-2)电流密度所需过电位仅为236 mV,是目前报道的较好的非金属电催化剂.同时,H-MWCNTs-MS在10,50和100 mA cm^(-2)电流密度下均表现出较好的电化学稳定性.利用原位衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS)技术研究了“边缘-平面位点”在OER过程中的结构重构过程,与理论计算分析的高能“边缘态”结果一致,并确定酮氧官能化位点为真实催化活性中心.理论计算结果表明,氧官能团修饰结构能够显著促进电荷的再分配,增强层间耦合作用,降低关键含氧中间体*OOH的形成能垒,加速OER反应动力学.此外,H-MWCNTs-MS的开放式结构极大程度提高了“边缘-平面位点”的利用率,减小的纳米管壁厚促进了层间电荷迁移,也是增强OER活性的关键要素.综上,精准构筑“边缘-平面位点”为开发高效石墨碳电极开辟了新的思路,通过原位谱学技术揭示边缘位点催化结构重构,能够进一步丰富研究者对于电催化协同效应的科学认识.